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Abstract
We survey several previous results on the Aanderaa-Karp-Rosenberg conjecture (i.e.,

graph evasiveness conjecture). In particular, we focus on the algebraic-topological approach
introduced by [KSS84] and on its application to the special case on bipartite graph prop-
erty. Some recent progress and the evasiveness of several specific graph properties are also
discussed.

1 Introduction

Let V be a vertex set with |V | = n and G(V ) be the set of undirected graphs on V . A graph
property P : G(V )→ {0, 1} is a mapping such that isomorphic graphs are mapped to the same
value. Given such a property, we want to determine if P(G) = 1 for an unknown graph G. An
algorithm can only gain information of the graph by asking questions of the form “Is e ∈ G?”,
i.e., querying entries of the adjacency matrix of G. Then an interesting quantity is the number
D(P) of questions an algorithm has to ask in the worst case to compute P(G).

Trivially, one may simply query all
(n

2
)

possible edges. We say that property P is evasive
if D(P) =

(n
2
)
. In particular, we are interested in monotone properties. A graph property is

said to be monotone if P(G) ≥ P(G′) for any G′ ⊆ G; in other words, the addition of edges
does not destroy the property. We also say that a graph property is nontrivial if it is not a
constant. Then the graph evasiveness conjecture (also known as the Aanderaa-Karp–Rosenberg
conjecture) states that

Conjecture 1 (Evasiveness conjecture). Every nontrivial monotone graph property on n ver-
tices is evasive.

The evasiveness conjecture was first proposed by Rosenberg for all nontrivial graph prop-
erties [Ros73]. It was later shown, however, by Aanderaa that there exists nontrivial property
which is not evasive [BvEBL74]. The first quadratic bound was shown by [RV75] proving that
at least n2/16 queries are required for testing any nontrivial monotone graph property. In 1983,
Kahn, Saks and Sturtevant introduced the topological method and resolved the conjecture for
the case where n is a prime power [KSS84]. We will survey several results of this line of works,
exhibiting deep connections between topology and graph evasiveness.

The remainder of this paper will be organized as follows. In Section 2, we introduce decision
tree complexity, which gives a formal version of the problem. The connections between graph
properties and topology will be shown in Section 3. In Section 4, we sketch several theorems
from algebraic topology, in particular the fixed point theorem for simplicial complex, that are
necessary to understand our main results concerning graph evasiveness. In Section 5, we present
the main evasiveness results with proofs. Finally, we discuss some more recent progress made
by topological method in Section 6.

2 Decision Tree Complexity

Informally, a Boolean decision tree is a tree representing the logical structure of an algorithm
computing a Boolean function of the form f : {0, 1}N → {0, 1}. It is a rooted binary tree,
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where each internal node is associated with a variable of the input and has two outgoing edges
labeled 0 and 1. Without loss of generality, we assume that the left edge is labeled with 1. In
addition, every leaf is labeled with either 0 or 1 that indicates the function value the decision
tree computes.
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Figure 1: A binary decision tree

To run the algorithm and compute f given an input x ∈ {0, 1}N , we start at the root
node, which is associated with, say, variable xi. We query xi and recurse on the left subtree
if xi = 1 and on the right subtree otherwise. The recursion ends at one of the leaves, and the
algorithm returns the Boolean value associated with the leaf. The depth of the tree determines
the maximum number of queries before reaching a leaf.

Under this view, an algorithm computing f and its decision tree are equivalent. The algo-
rithm computes the function, so does the decision tree. This motivates the following definition.

Definition 2.1 (decision tree complexity). The decision tree complexity D(f) of a Boolean
function f : {0, 1}N → {0, 1} is the least depth among all decision trees that compute f .

Given the definition, Conjecture 1 can be re-stated as follows.

Conjecture 1’. For any nontrivial monotone graph property P on n vertices, D(P) =
(n

2
)
.

3 Topological Connections

In this section, we introduce the notion of a simplicial complex. We will begin with its technical
definition and build up some intuitions by considering its geometric realization. Some of the
notations here draw on the lecture notes by László Lovász [LY02].

Definition 3.1 (abstract simplicial complex). An abstract simplicial complex is a nonempty
collection ∆ of sets such that if a set Q is an element of ∆, then all nonempty subsets of Q
must also be elements of ∆.

Figure 2: Geometric representation of an abstract simplicial complex. We are not using the
standard mapping defined below, since there is no higher-dimensional simplex than those in R2.

We call the elements of the sets in ∆ the vertices of ∆, denoted by V (∆). Given any
∆, one can construct its geometric realization ∆̂ ∈ RN , where N = |V (∆)|. First, define a
mapping ·̂ : V (∆)→ RN such that no vertex is mapped into the affine hull of any other subset

2



of vertices. Then map any set Q of vertices to Q̂ = conv{v̂ : v ∈ Q}, and thereby ∆ simply
becomes ∆̂ = ∪Q∈∆Q̂. Note that this maps every k-set in ∆ to a k − 1-simplex, where a point
is a 0-simplex, a line segment is a 1-simplex, and so forth.

To draw a connection between monotone graph properties and simplicial complexes, we
observe that the abstract simplicial complex associated with a property can be defined as
follows. Let V be a finite set and E ⊆ V × V . Suppose P : G(V ) → {0, 1} be a monotone
graph property. Then the abstract simplicial complex associated with P, denoted ∆(P), is the
collection of all nonempty sets E such that P((V,E)) = 0. For example, consider the monotone
property P where P(G) = 1 if G has at least 3 edges. Suppose V = {0, 1, 2, 3}. Then ∆(P)
looks like follows.

f0; 1g f0; 2g

f1; 2g f1; 3g f2; 3g

f0; 3g

Figure 3: The abstract simplicial complex associated with P.

The next theorem relates an evasive graph property to a condition on its simplicial complex,
called collapsibility. We begin the some necessary definitions.

Definition 3.2. Let ∆ be an abstract simplicial complex and Q ∈ ∆. Then Q is a maximal
simplex if it is not contained in any other simplex in ∆.

Definition 3.3. Let ∆ be an abstract simplicial complex and Q ∈ ∆. Then Q is a free face of
∆ if it is not maximal and contained in only one maximal simplex in ∆. If Q is a free face and
Q′ is the unique maximal simplex that contains it, then we say that Q is a free face of Q′

Definition 3.4. An elementary collapse is the operation of choosing a free face from of an
abstract simplicial complex and deleting it along with all the faces that contain it.

Definition 3.5. An elementary collapse is primitive if the free face that is deleted has dimension
one less than the maximal simplex that contains it.

For example, let ∆ = {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}} be a 2-simplex. Then
Q = {0, 1} is a free face of Q′ = {0, 1, 2}. By removing Q and Q′ from ∆, we obtain ∆′ =
{{0}, {1}, {2}, {0, 2}, {1, 2}}. This is primitive elementary collapse.

∆ ∆
0

Figure 4: A primitive elementary collapse.

Definition 3.6. Let ∆ be an abstract simplicial complex. Then ∆ is collapsible if there exists
a sequence of elementary collapses that reduces ∆ to a single 0-simplex.
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Figure 5: A decision tree where every path is of same length.

Now we are ready to prove the theorem that relates the evasiveness of graph property to
the collapsibility of the abstract simplicial complex associated with the property. The original
proof by [KSS84] requires a few more notions in topology, so here we present an elementary
proof given by [Mil13].

Theorem 1. Let P be a nontrivial monotone graph property that is not evasive. Then ∆(P)
is collapsible.

Proof. Let V be the vertex set of the graph and |V | = n. Since P is not evasive, there exists
some decision tree Tof depth less than

(n
2
)
. Without loss of generality, we assume that no edge

appears more than once on any path in T . Also, for simplicity we assume that every path in T
has uniform length

(n
2
)
− 1. Otherwise, one can simply add redundant queries below every leaf

that corresponds to a path of shorter length.
Now we can define a natural ordering on the leaves by asserting that for any internal node,

all leaves that can be reached from the “1” branch are smaller than those that can be reached
from the “0” branch. Since every pair of leaves shares a common ancestor, this gives a total
order on all leaves.

Observe that for any leaf of the tree, there are exactly two graphs that will lead the decision
tree to this leaf. The simplicial complex ∆(P) is composed of the graphs that correspond to
those “0”-leaves. The ordering of the leaves provides a sequence of elementary collapses that
reduces ∆(P) to a point. First we find the smallest “0”-leaf of T . This leaf corresponds to a
pair of simplices Q1, Q2 ∈ ∆(P) with Q1 ⊆ Q2, since the path that ends at this leaf has length(n

2
)
− 1. It follows from the ordering of the leaves that neither Q1 nor Q2 are not contained

in any other simplices in ∆(P). Thus, Q1 is a free face. Hence, we perform the elementary
collapse:

∆1(P)← ∆(P) \ {Q1, Q2}.

Next recurse on ∆1(P) by finding the second smallest leaf and performing another elementary
collapse until all simplices on “0”-leaves are removed and the simplicial complex is reduced to
a point.

We have so far established a link between evasiveness and collapsibility of simplicial com-
plex. That is, a monotone graph property is evasive if the associated simplicial complex is not
collapsible. We need more topology to show that in some cases the complexes are indeed not
collapsible, and a key step is to establish the topological fixed-point theorems.
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4 Fixed-Point Theorems

In this section, we discuss other necessary topological backgrounds for understanding the results
on graph evasiveness, particularly the fixed-point theorems. The proofs will be largely omitted,
and the reader is invited to read [Mil13] or some standard texts in algebraic topology for the
full proofs.

22

Figure 5: Fixed Points of Simplicial Maps of ∆3

What are the other fixed points in ∆̂? If the orbits12 of the permutationorbit

induced by ϕ on ∆ are H1, . . . ,Hk, then Ĥi is a face of ∆̂, with the center
of gravity a fixed point. Also, any convex combinations of these centers of
gravity is a fixed point.

Conversely, if x =
∑

v∈∆ αv v̂ is a fixed point, then x = ϕ̂(x) =
∑

v∈∆ αvϕ̂(v)
is also a representation of x, and because the representation of x in this
way is unique, there exists a permutation π of the vertices in ∆ such that
απ(v)π̂(v) = αvϕ̂(v), that is, ϕ(v) = π(v) and αv = απ(v). It follows that
αv = αϕ(v), so that for each orbit Hi of ϕ on ∆, we can choose βi so that
u ∈ Hi ⇒ αu = βi. Thus we have

x =
∑

v∈∆

αv v̂ =
∑

i

∑

v∈Hi

βiv̂ =
∑

i

βi|Hi|wi.

In other words, x is a convex combination of the centers of mass of the faces
corresponding to the orbits.

To view this from a more combinatorial perspective, suppose the orbits
of ϕ on the vertices of K are H1, . . . ,HN , and assume that the first t of
these are those which are also simplices of K. Let wi : 1 ≤ i ≤ t denote the
center of gravity of Ĥi. Then each wi is a fixed point, and any proper convex
combination x of a subset {wi1 , . . . , wir} ⊆ {w1, . . . , wt} is also a fixed point,
provided only that the x is in fact in K̂, that is, provided Hi1 ∪ · · ·∪Hir ∈ K.

In sum, if fix(ϕ) denotes the fixed points of ϕ̂, then fix(ϕ) = Ĥ, where

H = {{i1, . . . , ir} : Hi1 ∪ · · · ∪ Hir ∈ K} ,

and the vertices V (H) of the simplicial complex H are {1, . . . , t}, with î
taken to be the center of gravity of the face Ĥi.

12The orbits, or cycles, of a permutation are the minimal sets of elements such that the
permutation takes no element out of its set.

Figure 6: Fixed points of 3-simplex (in courtesy of [LY02])

Standard fixed-point theorems in topology tells us that a continuous map of a collapsible
polyhedron onto itself has a fixed point, i.e., a point that is mapped to itself. On the other
hand, the fact that a nontrivial monotone property P is invariant under permutation implies
that the geometric realization of the permutation maps ∆̂(P) to itself, and thus has a fixed
point if P is not evasive. The hope is that we can characterize the fixed points and deduce that
the cannot exist unless P is trivial, leading to a contradiction.

Definition 4.1. Let ∆ be a simplicial complex on the ground set V . A bijection φ : V → V is
an automorphism of ∆ if for each Q ∈ ∆, we have φ(Q) ∈ ∆, where φ(Q) = {φ(v) : v ∈ Q}.

There are numerous classical fixed-point theorems. The following is a special case of a result
due to Lefshetz [Lef26] that is a generalization of the well-known Brouwer’s fixed-point theorem.

Theorem 2 (Lefshetz). Every automorphism of (the geometric realization of) a non-empty
collapsible abstract simplicial complex has a fixed point.

We denote the set of fixed points of ∆̂ under an automorphism φ by fix(φ). It turns out
that there is a nice characterization of the set.

Definition 4.2. Let ∆ be an abstract simplicial complex on vertex set V , and f : V → V be
a automorphism of ∆. Let A1, · · · , Am ⊆ V denote the orbits of f . Then ∆f denote the set of
all subsets T ⊆ {A1, · · · , Am} such that ⋃

A⊆T
A ∈ ∆.

Observe that ∆f is an abstract simplicial complex whose vertices are all those orbits that
are contained in ∆. We define the geometric realization of ∆f by taking every one of its vertices
to be the center of mass of the face Âi for Ai ∈ ∆, denoted ∆̂f . The fixed-point set also forms
a simplicial complex, and geometrically it is generated by taking the convex hull of the centers
of mass of the orbits contained in ∆.

Theorem 3. Let φ be an automorphism of a simplicial complex ∆. Then fix(φ)= ∆̂φ.

Our first result in the next section will be on the bipartite graph properties, for which we
need a form of Hopf index formula. Let us first recall the Euler characteristic. For our purpose,
we give a definition that differs slightly from the standard one.

Definition 4.3 (Euler characteristic). The Euler characteristic of a simplicial complex ∆̂ is
defined by

χ
(
∆̂
)

=
∑

Q∈∆,Q 6=∅
(−1)|Q|.
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Note that the Euler characteristic is invariant of topological deformation, i.e., homotopy
invariant, and that a collapsible simplex has Euler characteristic −1.

Theorem 4 (Hopf index theorem). Let φ be an automorphism of a nonempty collapsible
simplicial complex, then χ(fix(φ)) = −1.

5 Evasiveness Results

Let us start with a result on the evasiveness of bipartite graph properties, due to Andrew Yao
[Yao88]. Let U and V be two disjoint ground sets and G(U, V ) be the set of all bipartite graphs
defined on the bipartition U, V . Then naturally, define a bipartite graph property by a function
f : G(U, V ) → {0, 1} that is invariant under isomorphisms. Additionally, the property is
monotone if adding edges between U and V does not destroy the property. Given the definitions,
we say that a bipartite graph property f is evasive if its decision tree complexity D(f) equals
|U | · |V |.

Theorem 5 ([Yao88]). Every nontrivial monotone bipartite graph property is evasive.

Proof. Let f be a nontrivial monotone bipartite graph property on G(U, V ). Suppose for a
contradiction that it is not evasive. Let ∆(f) be the simplicial complex associated with f , and
recall that its ground elements correspond to edges of the bipartite graphs in G(U, V ). Let φ
be a permutation of these edges induced by a cyclic permutation of vertices in U , while fixing
V unchanged. It is easy to observe that φ is an automorphism of ∆(f). The orbits of φ are the
sets of edges that share a common vertex in A, and we will index them by elements of A.

By Theorem 1, the complex ∆(f) is collapsible, and therefore has a fixed point by the
Lefshetz fixed-point theorem. It follows from Theorem 3 that there exists an orbit of φ that is
an element of ∆(f). Suppose that {u′} × V is such an orbit. But since f is invariant under
isomorphism, we deduce that every orbit {u}×V is in ∆(f). Therefore, the set ∆φ ⊆ ∆, which
determines the fixed point set, is of the form U ′ × V , where U ′ ⊆ U . By invariance under
isomorphism and monotonicity, ∆f can be characterized as

∆f = {U ′ × V : |U ′| ≤ c}

for some constant c ≤ |V |.
Let us now calculate the Euler characteristic of ∆̂f .

χ
(
∆̂f
)

=
c∑
i=1

(−1)i
(
|U |
i

)
(by Definition 4.3)

=
c∑
i=1

(−1)i
((
|U | − 1
i− 1

)
+
(
|U | − 1

i

))
(by Pascal’s identity)

= −1 + (−1)c
(
|U | − 1

c

)
.

Since ∆ is non-evasive and thus collapsible, by Theorem 4, χ(fix(φ)) = χ
(
∆̂f
)

= −1. This
implies that

(|U |−1
c

)
= 0, which is the case only if c = |U |. But then ∆f = {U × V } ⊆ ∆, and it

follows that ∆ is trivial, a contradiction.

One might expect that the similar proof technique works out for general graph properties.
The orbits of a permutation on a general graph, however, is much more complicated to charac-
terize, and therefore it is hard to deduce anything using the fixed-point theorems. Kahn, Saks,
and Sturtevant showed a surprising result that when the number of vertices is a prime power,
the problem is nevertheless tractable [KSS84]. Their proof relies on a more general fixed-point
theorem as follows.

6



Theorem 6 ([Oli75]). Let ∆ be a collapsible abstract simplicial complex and Γ be a group of
automorphisms of ∆. Suppose Γ′ is a normal subgroup of Γ such that |Γ′| = pk for some prime
p and integer k ≥ 1 and the quotient group Γ/Γ′ is cyclic. Then there eixsts x ∈ ∆̂ fixed by
every φ ∈ Γ.

Theorem 7 ([KSS84]). Let V be a finite ground set of order pk for some prime p and integer
k ≥ 1, Then every nontrivial monotone graph property P on V is evasive.

Proof. Assume that without loss of generality the vertex set V is the set of elements of the
Galois field Fpk . Consider the group Γ of permuatations of V given by the linear mappings

x 7→ ax+ b : Fpk → Fpk .

Let Γ′ ⊆ Γ be the set of mappings x 7→ x+ b. It is easy to observe that Γ′ is a group. To apply
the preceding theorem, we make the following observations.

• The subgroup Γ′ is normal. For any x, a, b ∈ Fpk such that a 6= 0, we have

a−1(ax+ b) = x+ a−1b.

• The factor group Γ/Γ′ is cyclic, since it is isomorphic to the group of mappings x 7→ ax :
a 6= 0, which in turn is isomorphic to the multiplicative group of Fpk .

Let P be a nontrivial monotone graph property, and suppose it is not evasive. As ∆(P) is
collapsible, by Theorem 6, there exists G ∈ ∆̂(P) that is fixed by every φ ∈ Γ; that is, G is a
Γ-invariant graph which does not satisfies P. Now obverse that Γ is transitive on edges, since
for any pair of distince elements (u, u′), (v, v′) ∈ V × V , the system of equations

ax+ b = y

ax′ + b = y′

has a solution with a 6= 0. This implies that the only nonempty Γ-invariant graph is the
complete graph, and hence, the property P is trivial, a contradiction.

We have shown our two classic evasiveness results obtained using topological methods. This
line of works has been fruitful over the last two decades. Next, we will briefly discuss some
recent progress.

6 Recent Progress

The earliest quadratic lower bound on the deterministic decision tree complexity of testing
nontrivial monotone graph property was obtained by [RV75] proving that n2/16 queries are
required. The classic paper [KSS84] also shows a n2/4− o(n2) lower bound for the decision tree
complexity. This has been further improved to (8/25)n2− o(n2) by [KT10] and to n2/3− o(n2)
by [ST13], both using topological approach. The last remains that best bound thus far.

A notatble work by Chakrabarti, Khot, and Shi [CKS01] extends the technique in [KSS84].
They showed that every minor-closed property, including planarity, is evasive for sufficiently
large n and that the property of containing a fixed subgraph is evasive for an arithmetic pro-
gression of values of n.

Karp also conjectured that Ω(n2) queries are required for testing nontrivial monotone graph
properties even if randomization is allowed. The first superlinear lower bound was given
by [Yao91] showing that Ω(n log1/12 n) queries are required. The bound was later improved
by [Kin88] to Ω(n5/4), by [Haj91] to Ω(n4/3). The current best bound of Ω(n4/3 log1/3 n) was
given by [CK07]. We remark, however, that topological constructions have not been applied to
studying the randomized query complexity.
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