
Mirror Descent and Online Learning*

Fred Zhang†

March 24, 2019

Abstract

We discuss the motivation and basic setup of mirror descent, a fundamental algorithm for convex opti-
mization. We focus on the applications of mirror descent to online learning problems.

1 Introduction: Gradient Descent

The focus of this note is first-order method for optimizing convex functions f :Rn →R. Throughout we assume
that the objective function f is differentiable and L-Lipschitz, i.e., ‖∇ f (x)‖ ≤ L. Gradient descent is a natural
algorithm for this task. Let x∗ = argmin f (x). Suppose we start with x0 such that ‖x0 − x∗‖ ≤ R. We choose the
step size

ηt = R

L
p

t
, (step size)

and follow the simple update rule:

Gradient-Descent(x0, f ):
For t = 1 to T :

xt+1 ←− xt −ηt ·∇ f (xt ).

To obtain an ε-approximate optimal point, the Gradient-Descent requires O
(
1/ε2

)
iterations. While the proof

is not particularly insightful, we include here as it will be reused later when we come to its online version.

Theorem 1.1 (Convergence of Gradient-Descent). Let x0 such that ‖x0 − x∗‖ ≤ R. The Gradient-Descent
algorithm for T iterations, starting at x0, satisfies

f

(
1

T

T−1∑
i=0

xi

)
− f (x∗) ≤ RLp

T
.

Proof. We first try to bound the distance of each point to the optimum.

f (xi )− f (x∗) ≤∇ f (xi )>(xi −x∗) (by convexity)

= 1

ηi
(xi −xi+1)>(xi −x∗) (by definition of the algorithm)

= 1

2ηi

(‖xi −x∗‖2 +‖xi −xi+1‖2 −‖xi+1 −x∗‖2) (
since a>b = 1

2

(‖a‖2 +‖b‖2 −‖a −b‖2))
= 1

2ηi

(‖xi −x∗‖2 −‖xi+1 −x∗‖2)+ ηi

2
‖∇ f (xi )‖2. (by definition of the algorithm)

*This is a lecture note with certain technical details omitted. For a formal treatment of the materials here, see the monographs by
Bubeck (2015) [Bub15] and Hazan (2016) [Haz16].

†Harvard University. Email: hzhang@g.harvard.edu.

1



Since ‖∇ f (xi )‖2 ≤ L2 and ‖x0 −x∗‖ ≤ R, summing the inequality above over all i gives

T−1∑
i=0

(
f (xi )− f

(
x∗))≤ R2

2ηt
+ ηL2T

2
. (1)

Finally, plugging in the value of ηt (step size) and applying Jensen’s inequality completes the proof.

Remark 1.1. Suppose the problem is constrained with a convex feasible region X . The theorem also holds
for projected gradient descent, where after the gradient update we project the result back to X (by Euclidean
distance). The analysis is almost identical.

So what is wrong with Gradient-Descent? If you revisit analysis, what is the gradient ∇ f (x) to begin with?
It is an object that tells you the directional derivative Du f of the function f , i.e., the rate of change of f along
direction u. In particular, the gradient is a linear map ∇ f (x) :Rn →R that takes in a vector u and spits out the
rate of change of f if you move towards u (at point x). Now if we go back to the definition of Gradient-Descent,
things look peculiar. The algorithm doesn’t even compile! The first term xt lives in Rn , but the second term
∇ f (xt ) is a linear map that lives in a different world. Now the question is why Gradient-Descent works at all
and when it may not work so well. To answer that, we need to introduce some basic functional analysis.

2 Basics of Banach Space

Let’s first examine the setup of our problem once more. Recall that we are interested in optimizing a differen-
tiable, convex function f : Rn → R. Moreover, we implicitly assumed that it is a normed space X = (Rn ,‖ · ‖),
and that the norm is `2 norm, so we have the identity a>b = 1

2

(‖a‖2 +‖b‖2 −‖a −b‖2
)

and so on. The Lipschitz
condition states that ‖∇ f (x)‖ ≤ L. This seems very problematic, since we just said ∇ f (x) should live in another
space (the space of linear maps), so shouldn’t it be equipped with another norm? The answer is two-fold.

(i) The gradients live in the dual space X ∗ of X , equipped with a dual norm ‖X ‖∗ ; but

(ii) the `2 space is self-dual, so Gradient-Descent compiles for `2 spaces.

What are these terms anyway? It turns out that to really generalize Gradient-Descent outside `2 space (i.e.,
Hilbert space), we will work with Banach space, i.e., complete1 normed vector space. We will assume that the
vector space is finite-dimensional and over the reals, and denote a Banach space by X = (Rn ,‖ ·‖).

Definition 2.1 (Dual space). Let X = (Rn ,‖ · ‖) be a Banach space, where the underlying field is the reals. The
(continuous) dual space X∗ is the space of (continuous) linear maps from X into R.

This is precisely the world where the gradients live! But what is the norm of the dual space?

Definition 2.2 (Dual norm). Let X = (Rn ,‖ · ‖) be a Banach space. The dual space is equipped with the dual
norm ‖ψ‖∗ = supx∈X

{
ψ(x) : ‖x‖ ≤ 1

}
.

This is an important notion in optimization, as it gives rise to the `p -`q -norm duality.2 Formally, one can
show (by Hölder’s inequality) that `p norm is the dual of `q norm, where 1/p +1/q = 1. But this means that the
dual of `2 space is . . . `2 itself! Therefore, as long as we always measure things by `2 norm, Gradient-Descent
is a well-defined algorithm, and Theorem 1.1 holds.

On the other hand, as you will see in Section 4, sometimes there are motivations to solve problems that
are intrinsically not `2. For these problems, our algorithms need to delve into the dual space, and this leads to
mirror descent.

1if you don’t recall its definition, it’s completely OK. It just means that the space is complete—there is no hole in it!
2it is also connected to the notions of Fenchel duality and convex conjugates.

2



Rn

X

xt

xt+1

yt+1

projection

∇Φ(xt )

∇Φ(yt+1)
gradient step

∇Φ

(∇Φ)−1

Figure 1: Illustration of mirror descent, in courtesy of [Bub15].

3 Mirror Descent

To appreciate mirror descent in its full generality, we will consider constrained convex optimization problem,
and denote the convex feasible region by X .

The idea of mirror descent is simple. See Figure 1 for an illustration. We will choose a strongly convex3

functionΦ :Rn →R, called mirror map, so that ∇Φmaps from the primal space to the dual space. Then we map
xt to the dual space by ∇Φ and perform gradient update there.

∇Φ(yt+1) =∇Φ(xt )−η∇ f (xt ). (gradient step)

Finally, we map the result back to the primal space using the inverse ofΦ and project it into the feasible region.

xt+1 ∈ΠΦX (yt+1). (projection)

The projectionΠΦ
X

is done with respect to the Bregman divergence associated withΦ:

ΠΦX (y) = argmin
x∈X

DΦ(x, y).

Here, the Bregman divergence associated withΦ is defined as

DΦ(x, y) =Φ(x)−Φ(y)−∇Φ(y)>(x − y). (Bregman divergence)

If you draw a picture of a convex function Φ, the Bregman divergence is the error of the linear approximation
of x centered at y .4 Therefore, one can think of Bregman divergence as a distance; as x, y become farther, the
first-order approximation would be more crude.

Mirror descent achieves the same convergence rate as Gradient-Descent but works in much more general
settings. The proof is not particularly interesting, so we omit it.

Theorem 3.1 (Convergence of mirror descent). Let Φ be a mirror map α-strongly convex w.r.t. ‖ · ‖. Let R2 =
supx∈Rn Φ(x)−Φ(x0), and f be convex, differentiable and ‖∇ f (x)‖∗ ≤ L. Then mirror descent with η= R

L

√
2α
t

satisfies

f

(
1

T

T−1∑
i=0

xi

)
− f (x∗) ≤ RL

√
2

αT
.

3We say that a function is α-strongly convex if f (y) ≥ f (x)+∇ f (x)>(y −x)+ α
2 ‖y −x‖2.

4Check out http://mark.reid.name/blog/meet-the-bregman-divergences.html for an interactive figure.

3

http://mark.reid.name/blog/meet-the-bregman-divergences.html


Proximal view. In some sense, we have only presented the algorithm in a mathematical view. Algorithmically,
one should understand the algorithm as the following. Let’s rewrite it a little bit. In fact, this is often taken as
the definition of mirror descent in the literature. Observe that

xt+1 = argmin
x∈X

DΦ(x, yt+1)

= argmin
x∈X

Φ(x)−∇Φ(yt+1)>x (by the definition of Bregman divergence)

= argmin
x∈X

Φ(x)− (∇Φ(xt )−η∇ f (xt )
)> x (by definition of the algorithm (gradient step))

= argmin
x∈X

η∇ f (xt )>x +DΦ(x, xt ) (by the definition of Bregman divergence) .

This gives what’s called the proximal view of mirror descent. The first term η∇ f (xt )>x is a first-order approxi-
mation of the objective centered at xt , and one should think of the Bregman divergence term as a regularizer
that penalizes xt+1 being far from xt . Thus, the method tries to minimize the local linearization of the objective,
while not moving too far away from the previous point, with distances measured by the Bregman divergence of
the mirror map.

Standard mirror maps. Note that the convergence of mirror descent (Theorem 3.1) depends on the choice of
mirror map. We discuss two examples.

(i) Euclidean setup: Φ(x) = 1
2‖x‖2

2. Clearly, Φ is 1-strongly convex w.r.t. `2 norm. It is not hard to show that
DΦ(x, y) = ‖x − y‖2

2. Thus, under the proximal view, the mirror descent becomes

xt+1 = argmin
x∈X

η∇ f (xt )>x + 1

2
‖x −xt‖2

2. (2)

Taking derivative and setting it to 0, we obtain exactly the gradient descent update rule xt+1 = xt−η∇ f (xt )!
So mirror descent generalizes gradient descent.

(ii) Simplex setup: Φ(x) = ∑
i xi log xi . It can be shown, by Pinsker’s inequality, that the negative entropy

functionΦ is 1
ln2 -strongly convex w.r.t. the `1 norm. The Bregman divergence is given by

DΦ(y, x) =∑
i

yi log yi −
∑

i
xi log xi −

∑
i

(log xi +1)(yi −xi )

=∑
i

yi log
yi

xi
−∑

i
yi +

∑
i

xi .

This is often called the generalized KL-divergence. This setup is often called the entropic regularization in
online learning.

Moreover, if the feasible region is the probability simplex∆= {
x ∈Rn :

∑
i xi = 1, xi ≥ 0

}
, the mirror descent

boils down to a multiplicative weights update scheme. To see that, first note that since ∇Φ(x) = 1+ log x,
where log is taken entrywise, the gradient step is

log yt+1 = log yt −η∇ f (xt )

Thus, we take
yt+1(i ) ← yt (i )e−η∇ f (xt ). (Multiplicative Weights)

What about the Bregman projection? Namely, how to find a point xt in the simplex that minimizes the
Bregman divergence to yt ? We claim that it is just a simple normalization w.r.t. `1 norm:

xt ← yt

‖yt‖1
. (`1 scaling)

4



Now we need to prove

argmin
x∈∆

DΦ(x, y) = yt

‖yt‖1
. (3)

Consider the Langrangian

L (x,λ) =∑
i

xi log
xi

yi
+∑

i
(yi −xi )+λ

(∑
i

xi −1

)
. (4)

To find the projection, for all i , we need

∂

∂xi
L = log

xi

yi
−1+λ= 0 (5)

Hence, xi ∝ yi , but
∑

i xi = 1, so it must be the case that x = y/‖y‖1.

4 Online Learning and Multiplicative Weights Update

So far we have seen what is wrong with Gradient-Descent only on a mathematical level. Technically, one
can still implement it no matter what norm we have in mind. We are going to see soon that algorithmically
Gradient-Descent can be broken as well, and this is precisely where one should use mirror descent instead.
The example is online linear optimization.

We consider an online, iterative game, where the player gets to play a distribution pt ∈∆n . Each time step
t , the player receives a loss function ft : ∆n → R of the form ft (p) = 〈`t , p〉, where `t ∈ [−1,1]n . The goal is to
achieve low regret; that is, the average loss is close to the loss incurred by the best strategy p∗ in hindsight.

regretT = 1

T

∑
t

ft (pt )−min
p∈∆n

∑
t

ft (p). (6)

We analyze two algorithms, gradient descent and mirror descent.

(i) Projected gradient descent. In particular, we consider the online gradient descent algorithm, where the
update rule is given by

xt+1 ← xt −ηt∇ ft (xt ).

Then we project it back to the simplex; recall that we remarked that the projection does not hurt the
convergence or require a different analysis. In particular, if one inspects the proof of Theorem 1.1, an
analog of (1) still holds. By the same argument we can show

T∑
t=1

(
ft (xt )− ft

(
x∗))≤ R2

2ηt
+ ηL2T

2
, (7)

so we have the same convergence, and the regret is given by

regretT ≤ RLp
T

,

where ft is L-Lipschitz and ‖xt − x0‖ ≤ R. However, note that since ‖∇ ft‖∞ ≤ 1, each loss function ft isp
n-Lipschitz w.r.t. the `2 norm. Thus, to obtain a ε-optimal point, we need T =O(n/ε2) iterations. The

dimension dependence looks really bad.

(ii) Mirror descent. Let’s instantiate the algorithm with simplex setup. We apply Theorem 3.1. Note that
‖∇ ft‖∞ ≤ 1, so the Lipschitz constant is L = 1. Also, for the negative entropy Φ, we have − logn ≤Φ(x) ≤
0 for x ∈ ∆n , so R2 = supx∈∆n

Φ(x)−Φ(x∗) = logn. Also, recall that Φ is O(1)-strongly convex w.r.t. `1

norm. By Theorem 3.1, we can obtain an ε-optimal solution only in O(logn/ε2) iterations, using mirror
descent! Moreover, algorithmically, mirror descent with simplex setup under the simplex constraint is
just multiplicative weights update, so it is fast and easy to implement.

5



References

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends® in
Machine Learning, 8(3-4):231–357, 2015.

[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

6


	Introduction: Gradient Descent
	Basics of Banach Space
	Mirror Descent
	Online Learning and Multiplicative Weights Update

