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Abstract

In this note, we introduce the notions of tensor networks and matrix product states (MPS). �ese objects
are particularly useful in describing quantum states of low entanglement.

We then discuss how to e�ciently compute the ground states of the Hamiltonians of 1D quantum
systems (using classical computers). �e density matrix renormalization group (DMRG), due to White (1992,
1993) [Whi92, Whi93], is arguably the most successful heuristic for this problem. We describe it in the
language of tensor networks and MPS.

1 Introduction

Recall that in the previous note, we considered the problem of computing the ground state energy a local
Hamiltonian. In particular, we discussed some hardness results. Namely, it can be used to encode SAT instances,
and we further gave a proof that it is QMA-Complete.

Despite the hardness results, physicists have come up with a variety of heuristics for solving this problem.
A typical observation here is that quantum interactions happen locally in many systems. In these cases, we
would hope that its ground state has low entanglement and thus admit a succinct classical representation.
Algorithmically, this leads to the idea that perhaps we can �nd such a representation e�ciently, using classical
computers.

In this note, we will see tensor networks and matrix product states that formalize the idea of succinctly
representing quantum states of low entanglement. As a side remark for the theoretical computer scientists
here, one motivation to study tensor network is that it provides a powerful visual tool for thinking about linear
algebra. It essentially turns indices into edges in a graph and summations over indices into contractions of
edges. In particular, we will soon see that the most useful inequality in TCS and mathematics can be drawn as a
cute tensor network.
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Figure 1: Guess what this is?

In the end, we will discuss the density matrix renormalization group (DMRG), which has established itself as
“the most powerful tool for treating 1D quantum systems” over the last decade [FSW07]. For many 1D systems
that arise from practice, the heuristic e�ciently �nds an (approximate) ground state in its matrix product state,
speci�ed only by a small number of parameters.
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2 Tensor Networks

Now let us discuss our �rst subject, tensor networks. If you have not seen tensors before, it is a generalization
of matrices. In computer scientists’ language, a matrix is a two-dimensional array, and a tensor is a multi-
dimensional array. In other words, if we think of a matrix as a square, then a 3 dimensional tensor looks a cube.
Formally, a (complex) n dimensional tensor T maps n indices to complex values, namely, to its entries:

T : [d1] × [d2] × · · · × [dn] → C.

�e simplest tensor network is a graphical notation for a tensor. For an n-dimensional tensor T , we draw a star
graph and label the center as T and the edges as the indices. To evaluate this tensor network, we put values on
the edges, i.e., indices, and then the tensor network would spit out its entry speci�ed by the indices.
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(a) A simple tensor network.
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(b) Evaluating a simple tensor network, T(1,5,3,1) = 1/
√

2.
�e numbers are chosen arbitrarily.

Figure 2: �e de�nition of the simplest tensor network.

Notice that the degree of the center is the number of indices. Hence, a tensor network of degree 1 is a vector,
and that of degree 2 is a matrix, and so forth.
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(c) A 3 dimensional tensor T

Figure 3: Simple tensor networks that represent basic linear algebraic objects.

How is this related to quantum information? For the sake of genearlity we will deal with qudits in Cd ,
instead of qubits in . Now recall that a quantum state |ψn〉 of n qudits can be encoded as an n dimensional
tensor. It can be wri�en as

|ψn〉 =

d−1∑
i1, · · · ,in=0

T(i1, · · · , in) |i1, · · · , in〉.

It is easy to see that all the information, namely, the amplitudes, is just the tensor T . In the later sections, we
will see more powerful examples of using tensor networks to represent a quantum state.

So far our discussion is focused merely on these li�le pictures. �e power of tensor networks come from
its composition rules, which allow us to join two simple tensor networks together and impose rich internal
structures.

2.1 Composition Rules

We introduce two ways of joining two simple tensor networks. Roughly speaking, they correspond to multipli-
cation and summation, and I will give the de�nitions by showing examples, instead of stating them in the full
formalism.
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Rule #1: Tensor Product. �e product rule allows us to put two tensor networks together and view them as
a whole. �e resulting tensor is the tensor product of the two if we think of them as vectors. More concretely,
consider the following picture.

T1 T2

i1

i2 i3

i4

i5 i6

i7

Figure 4: �is is viewed as a single tensor network T of 7 edges.

�e de�nition of this joint tensor T is

T(i1, i2, · · · , i7) = T1(i1, i2, i3, i4) · T2(i5, i6, i7).

Rule #2: Edge Contractions. At this moment, we can only make up disconnected tensor networks. Edge
contractions allow us to link two tensor networks. Suppose we have two 3 dimensional tensor networks.
Contracting two edges, one from each, gives us a tensor network of 4 free edges. �is now corresponds a tensor
of 4 dimensions.

T1 T2
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j3i3

(a) Two 3 dimensional tensors.

T

i1

i2

j1

j2

k

(b) Contracting i3 and j3 together gives a tensor T

Figure 5: Edge contractions.

We name the contracted edge as k . �e de�nition of T is

T(i1, i2, j1, j2) =
∑
k

T1(i1, i2, k) T2( j1, j2, k).

2.2 Useful Examples

Before we move on, let’s take some examples. Keep in mind that the degree of the vertex determines the number
of indices (dimensions of this tensor).

vu

(a) A vector inner product 〈u, v〉.

M N

(b) A matrix inner product M ◦ N .

T1 T2

(c) A tensor inner product T1 ◦ T2.

Figure 6: Inner products are given by joining all the free edges. Edge labels are omi�ed.

Here, one simply needs to remember that an edge between two tensor nodes is a summation over the index
corresponding to the edge. For example, in Figure 6a, 〈u, v〉 =

∑
i ui · vi , where edge is labeled as i. Now you

would realize that Figure 1 is the famous

〈u, v〉2 ≤ ‖u‖2‖v‖2. (Cauchy-Schwarz inequality)
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For us, the most important building block is matrix multiplication. Let H = MN . �en the de�nition of matrix
multiplication tells us

H(i, j) =
∑
k

M(i, k)N(k, j).

�is is precisely encoded in the Figure 7.

M Ni k j

Figure 7: Matrix multiplication, MN .

We are ready to talk about matrix product states. In the language of tensor network, a matrix product state
is the following picture.

A1 A2 A3 An−1 An

j1 j2 j3 jn−1 jn

Figure 8: A matrix product state.

As the degrees indicate, the two boundary vertices A1, An represent matrices and the internal vertices
represent 3-dimensional tensors. We can view each matrix as a set of (column) vectors and each 3-dimensional
tensor as a stack of matrices. �en each one of the free edges picks out a vector or a matrix, and the contracted
edges multiply them together which gives out a scalar. If this confused you, move on to the next section. I will
introduce the formal de�nition of matrix product states, and you will see that it is just the picture above.

3 Matrix Product States

Before giving the de�nition, let’s talk about how matrix product state (MPS) naturally arises from the study
of quantum states with low entanglement. Matrix product state can be viewed as a generalization of product
state—(pure) quantum state with no entanglement. Let’s consider a simple product state |ψ〉 of 2 qubits. It can
be factorized:

.|ψ〉 =
©«

1∑
i=0

αi
1 |i〉

ª®¬ ©«
1∑
j=0

α
j
2 | j〉

ª®¬ =
1∑

i, j=0
αi

1α
j
2 |i j〉

�is state is described by 4 complex scalars
{
α0

1, α
1
1, α

0
2, α

1
2
}
, and there is nothing quantum about it. However, if

the state has entanglement among its qubits, then we know that it is impossible to be factorized and thereby
wri�en as (1). MPS generalizes the form of (1) by replacing the scalars with matrices and vectors.

More formally, a matrix product state starts with the following setup. For an n-qudit system, we associate

• a qudit in {1,n} with d vectors
{

Aj1
1

}
,
{

Ajn
n

}
∈ RD ; and

• a qudit i in {2,3, · · · ,n − 1} with d matrices
{

Aji
i

}
∈ RD×D .

Here, ji range from 0 to d − 1, and D is called bond dimension. One can think of the set of vectors as a D by
d matrix and the set of matrices as a d by D by D three-dimensional tensor. �en let them correspond to the
vertices in Figure 8. With this setup, a quantum state is in matrix product state if it can be wri�en as

|ψ〉 =

n∑
j1, · · · , jn=1

Aj1
1 Aj2

2 · · · A
jn
n | j1 j2 · · · jn〉.
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It is important to keep in mind that Aj1
1 , A

jn
n are two vectors, and the other inner terms are matrices, and we

get a scalar from the product. �us, this represents the tensor T( j1, j2, · · · , jn) = Aj1
1 Aj2

2 · · · A
jn
n . Now back

to Figure 8, notice that each amplitude Aj1
1 Aj2

2 · · · A
jn
n from the equation above is an output of the tensor in the

picture, where the free edges take values j1, j2, · · · , jn. Also, as discussed earlier, the contracted edges in Figure 8
correspond to matrix and vector multiplications, so the tensor T is precisely represented Figure 8.

�e complexity of the MPS is closely related to the bond dimension D. In particular, the number of parameters
in this model is O(ndD2). We would expect that with higher D, we may describe quantum states of more
entanglement. In other words, the representation power of an MPS increases with D. In principle, one can
represent any quantum state as an MPS; however, D can be exponentially large. See, e.g., Section 4.1.3 of [Sch11]
for a proof. On the other extreme, the product state example shows that if D = 1, one can represent and only
represent unentangled states. To summarize, here is the picture you should keep in mind.

D = 1: product states only D = Ω(exp(n)): any quantum states

Increased expressive power of MPS

Figure 9: Representation power of MPS increases with bond dimension D.

4 Density Matrix Renormalization Group

We are now ready to describe Density Matrix Renormalization Group, proposed originally in [Whi92, Whi93].
As mentioned earlier, it does not come with provable guarantees. In fact, one can construct arti�cial hard
instances such that the algorithm get stuck at certain local minima [SCV08]. However, it has remained one of
the most successful heuristics for 1D systems. We refer the readers to [Sch11] for a complete survey.

DMRG is a simple alternating minimization scheme for computing the ground state of a 1D Hamiltonian.
We start with an arbitrary MPS. �en each step we optimize over the set of matrices

{
Aji
i

}d
ji=0

associated with

site i, while �xing everything else.1, and iterate until convergence.
Formally, the Hamiltonian problem can be phrased as a eigenvalue problem given a Hermitian matrix H,

and thus we want to optimize over all |ψ〉 in MPS of a �xed bond dimension D

min
|ψ〉

〈ψ |H |ψ〉
〈ψ | |ψ〉

.

Here, we assume that the input Hamiltonian is in the product form. In particular, it means that it can be wri�en
as a tensor network as Figure 10a so that the numerator of the optimization objective looks like Figure 10b.

H

(a) Input 1D Hamiltonian is of the particular product form.

H

j i

j i

(b) �e quadratic form 〈ψ |H |ψ〉

Figure 10: �e input and the numerator of the optimization objective

�e DMRG works with the Langrangian of the objective (4). For some λ > 0, we will consider

min
|ψ〉
〈ψ |H |ψ〉 − λ〈ψ | |ψ〉. (1)

1You may wonder if one can simultaneously optimize over multiple sites. It turns out that it is an NP-hard problem [Eis06].
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DMRG optimizes over the set of matrices associated with one qudit. Both terms in of 1 are quadratic in this set
of matrices, as one can see from the Figure 11.

H

j i

j i

λ

j i

j i

Figure 11: �e Langrangian 〈ψ |H |ψ〉 − λ〈ψ | |ψ〉 as a tensor network.

H

j i

j i

λ

j i

j i

Figure 12: �e derivative that we set to 0 and solve.

H

j i

j i

λ

j i

j i

x

x

H
0

B

Figure 13: �e unknown is named x and the rest of the network is denoted by H ′ and B for each term.

Now to optimize over the set of parameters associated with one site, calculus tells you (1) to set the (partial)
derivative to 0 and (2) the derivative of a quadtric thing is linear. Without going through any algebra, we
can guess that the derivative of Figure 11 with respect to a particular site, say the second one, is the same
picture except removing the second site on one side—Figure 12. Notice that the unknown is still there, on the
bo�om side of each term. �e trick of DMRG is to view the rest of the network as a linear map applied to the
unknown—Figure 13.

Given H ′ and B, we now have a clean numerical linear algebra problem of solving

H ′x = λBx. (2)

�s is called a generalized eigvenvalue problem, and it is well studied. Importantly, for 1D systems, H ′ is
typically very sparse, which enables very fast solvers in practice. Finally, DMRG sweeps over the sites one a�er
another and stops until convergence is achieved.
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5 Concluding Remarks

Our presentation of tensor networks and MPS roughly follows [GHLS15], a nice introductory survey on quantum
Hamiltonian complexity.

�e notion of tensor network extends well beyond 1D systems, and a generalization of MPS is called tensor
product state. It leads to algorithms for higher dimensional quantum systems. One may read [CV09] for a
comprehensive survey.

Tensor network has been interacting with other concepts. Within physics, it has been used in quantum
error correction [FP14, PYHP15], conformal �eld theory [Orú14], and statistical mechanics [EV15]. In TCS ,
we have found its connections with Holographic algorithms [Val08, CGW16], arithmetic complexity [BH07,
CDM16, AKK19], and spectral algorithms [MW18]. In machine learning, it has been applied to probabilistic
graphical models [RS18], tensor decomposition [CLO+16], and quantum machine learning [HPM+18].

For DMRG, we have only given a rough outline, with many details omi�ed, such as how to set D and λ and
how to obtain the Hamiltonian in the matrix product form, and how to compute the linear maps H ′ and B for
each iteration. An interested reader may read [Sch05, Sch11].
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