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Forecasting
Online and over many days



High Level Pitch
Online learning meets streaming algorithm 

• The experts problem


• The most basic question in online learning


• Classically: multiplicative weights update (MWU) method


• Optimal  regret, but  space complexity


• Main result: first algorithm with small regret & sub-linear memory


• Conceptually: a sub-linear space version of MWU


• Opens up many new directions (more soon!)

T Ω(n)
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Online Prediction with Experts Advice

• An unknown sequence {0, 1} of T days


• Experts from 1 to n


• At day t, expert i recommends  


• Algorithm follows one of them & suffers loss 1 iff it makes mistake

xt(i) ∈ {0,1}

Regret(T) = ∑
t∈[T]

ℓt(ALG) − min
i*∈[n] ∑

t∈[T]

ℓt(i*)

Formalizing weather forecasting



Online Learning with Experts Advice
A slight generalization and better known

• T days, n experts


• No sequence to predict


• Algorithm plays one of the experts from [n]


• At the end of the day, each expert receives a loss ℓt(i) ∈ [0,1]

Regret(T) = ∑
t∈[T]

ℓt(ALG) − min
i*∈[n] ∑

t∈[T]

ℓt(i*)



Adversary Model?
Three variants

i) Non-adaptive: the loss vectors  are fixed upfront


ii) Blackbox adaptive: the adversary sees the output of the algorithm and 
may adapt future loss values


iii) White-box adaptive: the adversary may even see the internal state of 
the algorithm

ℓt ∈ [0,1]n

This talk: focus on non-adaptive model, the most classic in literature



Goal 
Regret minimization

• Known: can achieve  regret


• Many algorithms can do this


• Naive (Follow-the-Leader): play the expert with minimum historical loss


• Known: regret = 


• Classic algorithms refine this idea

T log n

Ω(T)



How to Solve it?
i) Multiplicative Weights Update

✤  Algorithm [MWU]:


• Initialize weight w = (1/n, 1/n, …, 1/n)  

• For each day t: 


• Play: expert  with probability proportional to 


• Observe: loss 


• Update: 

i wi

ℓt(i), for each i ∈ [n]

wi ← wi(1 − ℓt(i)/2)



Comments on MWU

• Equivalence: Follow-the-Regularized-Leader (FTRL)

❖  Algorithm [FTRL]


Update:  p(t) = arg min
p∈Δn

∑
j≤t

⟨p, ℓj⟩ + η ⋅ ψ(p)

• Regret: 


• Memory size: 

T

Ω(n)



How to Solve it?
ii) Follow-the-Perturbed-Leader (FTPL)

❖  Algorithm [FTPL]


Play:  i ∈ arg min
i ∑

j<t

ℓj(i) + εi

• Regret: 


• Memory size: 

T

Ω(n)



Take-away Message

• Goal: design o(n) space algorithm with small o(T) regret


• Main barrier: leader selection 


• All classic algorithms follow this paradigm


• We have to get around it
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What can we do then?
Find out the best expert in small space?

• Let’s say 


• Once I know the best expert, keep playing it and suffer 0 regret 
forever


• Theorem [No-Go against Best Expert Identification]: 


   Identifying best expert cannot be done in o(n) space 

T → ∞

Srinivas, Woodruff, Xu & Zhou, STOC 22



Proof
Via communication complexity reduction

• Set Disjointness —needs  bits of communication


• Alice holds ; Bob holds 


• Promise problem


• Distinguish  or 

Ω(n)

X ∈ {0,1}n Y ∈ {0,1}n

|X ∩ Y | = 0 1



Proof
Continued

• Reduction


• Alice: a stream of T = n days. 
Expert i is correct on day i iff 




• Bob: similarly 


• Combine the stream —> instance 
of online learning with 2n days

Xi = 1

X = 11001 = {1,2,5}
Day 1 Day 2 Day 3 Day 4 Day 5

Expert 1 ✅ ❌ ❌ ❌ ❌

Expert 2 ❌ ✅ ❌ ❌ ❌

Expert 3 ❌ ❌ ❌ ❌ ❌

Expert 4 ❌ ❌ ❌ ❌ ❌

Expert 5 ❌ ❌ ❌ ❌ ✅ 



Proof
Disjoint case

X = 11001 = {1,2,5}, Y = {3,4}

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Expert 1 ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Expert 2 ❌ ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Expert 3 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌ ❌

Expert 4 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌

Expert 5 ❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌ ❌ ❌

All experts are correct at most once



Proof
Non-disjoint case

X = 11001 = {1,2,5}, Y = {1,3,4}

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Expert 1 ✅ ❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌ ❌

Expert 2 ❌ ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Expert 3 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌ ❌

Expert 4 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌

Expert 5 ❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌ ❌ ❌

Expert 1 is correct twice



Proof
Finishing off

• Create the instance by the reduction


• Alice runs the best arm identification algorithm, sends her memory to Bob, 
and Bob continues —> best expert


• The best expert is correct on exact 2 or <= 1 days


• Corresponding to the two cases of Set Disjointness


• Run another round of communication to double check


• Conceptual message: best arm identification harder than regret 
minimization in sub-linear space
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Main Result
Think of T → ∞

❖ Theorem [Peng & Zhang, SODA ’23]

An online learning algorithm (under non-adaptive adversary) that


• uses  memory; 


• gets a total regret of 
nδ

O (T2/(2+δ)n2)
Examples:


•  memory &  regret (with )


•  memory  &  regret  (with )

n0.99 T2/3 δ = 0.99

n T4/5 δ = 0.5



A Memory-Regret Trade-off 
Upper bound

δ

Regret

2/3

This turns out to be far from tight!



Known Lower Bound
Prior work by Srinivas, Woodruff, Xu & Zhou, STOC 22

• Theorem [Memory Lower Bound for Experts Learning]


    For any algorithm with S bits of memory, regret is at least 


• Examples:


• With S = n, regret is 


• With S = √n, regret is 


• With S = O(1), regret is 

Ω ( nT/S)

Ω ( T)
Ω (n1/4 T)

Ω ( nT)



Follow-up Work
Peng & Rubinstein (arXiv, 2023)

•  regret is possible, even in constant space!


• Theorem [Tight Memory-Regret Tradeoff for Online Learning]


 An algorithm matching the lower bound (up to polylogs)


• Same framework of this talk — though a quite a tour de force

On ( T)



Outline

Background & problem settings


A simple hardness result


Our results


Algorithms & techniques


Open directions



Overview
A baseline algorithm + bootstrapping

i) A baseline algorithm


• Regret:  regret


• Memory:  space


ii) A hierarchical “width reduction” procedure


• Regret: From  to 


• Memory: small blow-up

εT

1/ε2

εT T1−δ(ε)



A Natural Idea
Subsampling!

❖  Baseline Algorithm [A High-Level Abstraction]


• Maintain a small subset of experts (the pool)


• Run MWU on them

Intuition: Reduce regret minimization to pooling good experts 
(to be formalized)



Baseline Algorithm
Very simple

❖  Algorithm [Baseline]


• Initially, sample an arbitrary pool of  experts


• Play MWU(Pool) everyday


• Within each epoch:


• At the beginning, sample 1 expert into the pool (reinitialize the 
MWU)


• At the end, apply some eviction rule to remove experts

1/ε2

Break the T days into epochs of length B



Naive Attempt
Just look at the average loss? 

• Evict the worst-performing expert?


• Counter-example:


• One best expert, good on average 


• Many bad experts, but they excel 
locally (on small regions)


• Best expert can be evicted and 
hard to come back

T

Loss



The Lesson
We need stability

• Non-robust with respect to local performance 


• Average performance is useful—just need to be looked at differently


• For a old expert, its average loss is “stable”


• For a young expert, it’s not


• Key idea: Respect senior folks! This stabilizes the algorithm


• Keep good experts


• Keep old experts

Average Loss of i = 
Cumulative Loss of i

Age of i



Baseline Algorithm: Eviction Rule

• High level: pairwise tournament, any expert that gets dominated is evicted


• Definition [dominance] An expert i dominates an expert j, if 


i) Expert i is older than expert j; and 

ii) Over j’s lifetime, expert i’s average loss <= j’s

Expert 1 

Loss 0.5

Loss 0.4

Keep both

Expert 2 

Expert 1 

Loss 0.5

Loss 0.51

Keep expert 1

Expert 2 



Baseline Algorithm: Eviction Rule
Refined

Let  = average loss of i over j’s lifetime


❖  Definition [dominance]. An expert i dominates an expert j, if 


i) Expert i is older than expert j; and 

ii)  

Lj(i)

Lj(i) ≤ Lj( j) + ε

Interpretation: for j to survive, it has to be better than i by an  marginε

E1

E2



Baseline Algorithm: Eviction Rule
In pictures

Expert 1 

Loss 0.5

Loss 0.5 − 2ε

Keep both

Expert 2 

Expert 1 

Loss 0.5

Loss 0.5 − ε

Keep expert 1

Expert 2 

Next: memory analysis, then regret 



Memory Analysis
Bound pool size by 1/ε2

❖ Lemma [loss vs length]


Let  = the pool at time t. 


Let  = the lifetime of i for . Let   = average loss of i over j’s lifetime.


After eviction, take i older than j ( ). Then either


i) ; or


ii)

Pt

βi i ∈ Pt Lj(i)

βi ≥ βj

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2



Memory Analysis
Picture for the key lemma

i) Either ; or


ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2

Length = L

Length ≥ (1 + ϵ)L

loss = ℓ

loss ≥ ℓ + ε/2



Key Lemma
Proof Sketch

• Assume ii) doesn’t hold, and show i) has to hold

Length = L

Length ≥ (1 + ϵ)L

loss = ℓ

loss ≥ ℓ + ε/2

i) Either ; or


ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2



Key Lemma
Proof Sketch

• Assume ii) doesn’t hold. Show i) has to hold


• The eviction rule => 


• By assumption => 


• Loss of i in red segment is small + loss is [0,1] => red segment is long

Lj(i) > Lj( j) + ε

Li(i) < Lj( j) + ε/2

Length of j = L

Length of i ≥ (1 + ϵ)L

Loss of j = ℓ

Loss of i < ℓ + ε/2NOT ii) i)

i) Either ; or


ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2



Memory Analysis
Pool size bound

• Order experts in pool by their age: 1 -> 2 -> 3 -> 4 ->…


• Naive argument: consider adjacent pairs


• If always case i), cannot happen for >  times


• If always case ii), cannot happen for >  times

log T
log(1 + ε)

= O(log T/ε)

1/ε

Length = L

Length ≥ (1 + ϵ)L

loss = ℓ

loss ≥ ℓ + ε/2

i) Either ; or


ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2



Memory Analysis
Pool size bound

• Claim: Pool size 


• Between any i older than j in the pool


• i —> j if                          (length ↓)


• i —> j if                  (loss ↓) 

• A DAG with edge colors


• Longest green chain ; and longest red chain 


• Size of graph  (can be formalized via Dilworth’s theorem)

≤ 1/ε2

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2

≤ log T/ε ≤ 1/ε

≤ 1/ε2

1 2 3

i) Either ; or


ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj( j) + ε/2



Remarks
Finishing off memory analysis

• Recall: eviction rule makes pairwise comparisons on sub-intervals


• Quadratic blow up from pool size to actual memory usage


• =>  memory


• A potential function argument to bound the pool size by 


• =>  memory as promised


• See the paper for details

1/ε4

1/ε

1/ε2



Regret Analysis
At a high level

• Regret = “Inner-Regret” + “Outer-Regret”


• “Inner-Regret” = ALG - best expert in the 

pool 


• “Outer-Regret” = best in pool (j*) - best 

overall (i*)


• Inner-Regret is small by MWU 


• Outer-Regret is small if the pool contains 

good experts in general

ALG

j*

i*



Regret Analysis
Epoch by epoch

Regret = “Inner-Regret” + “Outer-Regret”


i) Inner-Regret = 


ii) Outer-Regret: a thought experiment


(T/B)
⏟

# Epochs

⋅ B⏟
Regret per epoch

ALG

j*

i*

Epoch length = B
Best expert = i*



Analysis of Outer-Regret
Thought experiment

• Recall at the beginning of each epoch, we sample 1 expert into the pool


• Consider a fixed epoch


• Thought experiment: imagine i* had been sampled at its beginning 
(regardless what happened in the actual execution of the algorithm)


• Definition [Evict and stay epoch]


• An epoch is an evict epoch if i* would be evicted eventually (at some 
point in future)


• An epoch is an stay epoch if i* would stay forever 

Epoch length = B
Best expert = i*



Evict Epoch
They are good

• Intuition: evict epochs are good epochs 


• If i* is evicted by some j, then due to the eviction rule


• j is an older expert


• j’s average loss is ~smaller than i over i*’s lifetime, up to 


• => Within i*’s lifetime, j’s loss is only  worse than i* per day (on average)


• => Within i*’s lifetime, outer-regret per day is at most 

ε

ε

ε

Epoch length = B
Best expert = i*

i* i* beaten by jj



Evict Epoch

• Conclusion: Within i*’s lifetime, average outer-regret is at most  


• Potentially, all epochs evict epochs


• In total, outer-regret, due to evict epochs, is 

ε

≤ εT

i* i* beaten by jj

Epoch length = B
Best expert = i*



Stay Epoch
They are bad but can be bounded

• Intuition: stay epochs are bad epochs


• No expert in pool can compete with i* 

• Key idea: bound the number of stay epochs


• If in one of the stay epochs, i* actually got sampled, we are done!


• Foe each stay epoch, this happens with probability 1/n 

• After  stay epochs, i* would be sampled into the pool with high probabilityO(n log n)
i*j i*i*

i*  survives to T

Epoch length = B
Best expert = i*



Stay Epoch

• Conclusion: at most  stay epochs


• Naively, outer-regret within each stay epoch 


• => In total, total outer-regret, due to stay epochs, is

O(n log n)

≤ B

≤ Bn log n

Epoch length = B
Best expert = i*



Finishing Regret Analysis 

Regret = “Inner-Regret” + “Outer-Regret”


i) Inner-Regret = 


ii) Outer-Regret:

(T/B)
⏟

# Epochs

⋅ B⏟
Regret per epoch

εT⏟
evict epoch

+ Bn log n

stay epoch

Summing and choosing B properly =>  regretεT



Online Width Reduction
Second part of our algorithm

• Baseline:  memory and  regret


• Width reduction: boost the regret guarantee


• Observation: If the loss is within  instead of , the regret guarantee is 
 instead of 


• Observation: Average loss of any expert is  baseline - , by the regret 
guarantee


• Idea: Create meta-expert  by taking the best of { i and baseline }

1/ε2 εT

[0,ρ] [0,1]
O(ερT) O(εT)

≥ ε

ei



Online Width Reduction

• Idea: Create meta-expert  by taking the best of { i and baseline }


• Run MWU on i and baseline (intuitively, MWU is taking min, up to small gap)


• Claim: the loss of  is in [Baseline - , Baseline] 


• Upper bound: MWU is ~ taking min


• Lower bound due to [Observation: Average loss of any expert is  baseline - , 
by the regret guarantee]


• Reduces width from 1 to 

ei

ei ε

≥ ε

ε



Conclusion
Open directions

• Applications of expert learning (treating our algorithm as a blackbox)


• Streaming (e.g., maximum matching, linear programming and set cover)


• Finding game equilibria (adaptivity is an issue)


• Extend our results to


• other sequential decision making problems (e.g., reinforcement learning)


• other notions of regret (e.g., swap regret and dynamic regret)


• Calibration in online prediction 


• Simpler optimal algorithm (c.f. Peng & Rubinstein, arXiv 2023)


