iction In Sub-linear Space

Online Pred

Fred Zhang (UC Berkeley)

Binghui Peng (Columbia)

Forecasting

Online and over many days

CENTRAL NEW YORK'S MOST ACCURATE FORECASYT

High Level Pitch

Online learning meets streaming algorithm

* The experts problem
 The most basic question in online learning

e Classically: multiplicative weights update (MWU) method
e Optimal ﬁ regret, but €2(7) space complexity
* Main result: first algorithm with small regret & sub-linear memory

 Conceptually: a sub-linear space version of MWU

* Opens up many new directions (more soon!)

Outline

0 Background & problem settings
a A simple hardness result

o Qur results

o Algorithms & technigques

o Open directions

Outline

0 Background & problem settings
a A simple hardness result

o Qur results

a Algorithms & techniques

a Open directions

Online Prediction with Experts Advice

Formalizing weather forecasting

* An unknown sequence {0, 7} of T days

* Experts from 7 to n
» At day t, expert i recommends x,(i) € {0,1}

* Algorithm follows one of them & suffers loss 7 iff it makes mistake

Regret(T) = Z ¢(ALG) — min 2 20
el e

Online Learning with Experts Advice

A slight generalization and better known

* [days, n experts
* No sequence to predict

* Algorithm plays one of the experts from [n]

- At the end of the day, each expert receives a loss £ (i) € [0,1]

Regret(T) = Z ¢ (ALG) — min Z £ (%)

[T celnl o

Adversary Model?

Three variants

) Non-adaptive: the loss vectors £, € [0,1]" are fixed upfront

) Blackbox adaptive: the adversary sees the output of the algorithm and
may adapt future loss values

i) White-box adaptive: the adversary may even see the internal state of
the algorithm

This talk: focus on non-adaptive model, the most classic in literature

Goal

Regret minimization

» Known: can achieve /T log n regret

 Many algorithms can do this
* Naive (Follow-the-Leader): play the expert with minimum historical loss
« Known: regret = Q(7')

» Classic algorithms refine this idea

How to Solve it?
i) Multiplicative Weights Update

* Algorithm [MWU]:

 |nitialize weight w = (71/n, 1/n, ..., 1/n)

* For each day f:
» Play: expert 1 with probability proportional to w;
» Observe: loss (i), for each [€ [n]

» Update: w; < w1l — £ (i)/2)

Comments on MWU

* Equivalence: Follow-the-Regularized-Leader (FTRL)

% Algorithm [FTRL]

Update: p(t) = arg min Z p.¢;)+n-y(p)
pEA, i<t

 Regret: ﬁ

« Memory size: (2(n)

How to Solve it?
i) Follow-the-Perturbed-Leader (FTPL)

% Algorithm [FTPL]

Play: 1 € arg min (1) + €
i Z / l

i<t

 Regret: ﬁ

« Memory size: (2(n)

Take-away Message

* Goal: design o(n) space algorithm with small o(T) regret

 Main barrier: leader selection
» All classic algorithms follow this paradigm

* \We have to get around it

Outline

@ Background & problem settings
a A simple hardness result

o Qur results

a Algorithms & techniques

a Open directions

What can we do then?

Find out the best expert in small space?

e Let'ssay I — o0

* Once | know the best expert, keep playing it and suffer O regret
forever

 Theorem [No-Go against Best Expert Identification]:

ldentifying best expert cannot be done in o(n) space

Srinivas, Woodruff, Xu & Zhou, STOC 22

Proof

Via communication complexity reduction

» Set Disjointness —needs £2(n) bits of communication

e Alice holds X € {0,1}"; Bob holds Y € {0,1}"

 Promise problem

e Distinguish [XNY|=0or1

Proof

Continued

e Reduction

* Alice: a stream of T = n days.
Expert / Is correct on day | Iff

 Bob: similarly

e Combine the stream —> instance
of online learning with 2n days

X =11001 = {1,2,5)

Day 1 | Day 2 | Day 3 | Day 4 | Day 5
Expert 1 X X | X | X
Expert2 | X X | X | X
Expert 3 X X X X X
Expert4 [X | X | X | X | X
Expert 5 X X X X

Proof

Disjoint case

X =11001 = {1,2,5},Y = {3,4)

All experts are correct at most once

Day 1| Day 2 | Day 3 | Day 4 | Day 5| Day 6 Day 7 | Day 8 | Day 9 | Day 10
Expert 1 X | X | X | X | X | X | X | X | X
Expert2 | X X X | X | X | X | X | X | X
Expert3 | X X | X | X | X | X | X X | X
Expert4 | X X | X | X | X | X | X | X X
Expert 5 X X X X X X X X X

Proof

Non-disjoint case

X =11001 = {1,2,5},Y = {1,3,4}

Expert 7 is correct twice

Day 1| Day 2 | Day 3 | Day 4 | Day 5| Day 6 Day 7 | Day 8 | Day 9 | Day 10
Expert 1 X | X | X | X X | X | X
Expert2 | X X X | X | X | X | X | X | X
Expert3 | X X | X | X | X | X | X X | X
Expert4 | X X | X | X | X | X | X | X X
Expert 5 X X X X X X X X X

Proof
Finishing off

» Create the instance by the reduction

* Alice runs the best arm identification algorithm, sends her memory to Bob,
and Bob continues —> best expert

* The best expert is correct on exact 2 or <=1 days
* Corresponding to the two cases of Set Disjointness

e Run another round of communication to double check

 Conceptual message: best arm identification harder than regret
minimization in sub-linear space

Outline

@ Background & problem settings
@ A simple hardness result

o QOur results

a Algorithms & techniques

a Open directions

Main Result
Thinkof T = oo

% Theorem [Peng & Zhang, SODA ’23]

An online learning algorithm (under non-adaptive adversary) that

. uses 7° memory;

+ gets a total regret of O (77+n?)

Examples:

e 1"7? memory & T regret (with 6 = 0.99)

o \/; memory & T4 regret (with 0 = 0.5)

A Memory-Regret Trade-off

Upper bound

Reg ret 0.80 |

2/3

- 4 4
- .00 & U - ' -

0.4 0.6 0.8

0

This turns out to be far from tight!

Known Lower Bound
Prior work by Srinivas, Woodruff, Xu & Zhou, STOC 22

* Theorem [Memory Lower Bound for Experts Learning]

For any algorithm with S bits of memory, regret is at least Q (\/nT/S)

* Examples:

. With S = n, regret is Q (\/T)
. With S = /n, regret is Q (n”“ﬁ)

. With S = O(7), regret is O (W)

Follow-up Work

Peng & Rubinstein (arXiv, 2023)

. O, (ﬁ) regret is possible, even in constant space!

 Theorem [Tight Memory-Regret Tradeoff for Online Learning]

An algorithm matching the lower bound (up to polylogs)

 Same framework of this talk — though a quite a tour de force

Outline

@ Background & problem settings
@ A simple hardness result

2 Qur results

a Algorithms & techniques

a Open directions

Overview
A baseline algorithm + bootstrapping

) A baseline algorithm
» Regret: €1 regret
. Memory: 1/&* space
i) A hierarchical “width reduction” procedure

» Regret: From T to 170

 Memory: small blow-up

A Natural Idea
Subsampling!

¢ Baseline Algorithm [A High-Level Abstraction]

* Maintain a small subset of experts (the pool)

e Run MWU on them

Intuition: Reduce regret minimization to pooling good experts
(to be formalized)

Baseline Algorlthm Break the T days into epochs of length B
Very simple

% Algorithm [Baseline]

e |nitially, sample an arbitrary pool of 1/ £’ experts
* Play MWU(Pool) everyday
» Within each epoch:

* At the beginning, sample 7 expert into the pool (reinitialize the
MWU)

* At the end, apply some eviction rule to remove experts

Naive Attempt

Just look at the average loss?
, Loss

* Evict the worst-performing expert?
* Counter-example:
* One best expert, good on average

 Many bad experts, but they excel
locally (on small regions)

 Best expert can be evicted and
hard to come back

The Lesson Cumulative Loss of i

Average Loss of | =
We need stability ° Age of 1

* Non-robust with respect to local performance

* Average performance is useful—just need to be looked at differently
* For a old expert, its average loss Is “stable”
* For a young expert, it’s not

 Key idea: Respect senior folks! This stabilizes the algorithm
 Keep good experts

 Keep old experts

Baseline Algorithm: Eviction Rule

* High level: pairwise tournament, any expert that gets dominated is evicted

* Definition [dominance] An expert i dominates an expert j, if

) EXxpertiis older than expert j; and

i) Over /’s lifetime, expert i’s average loss <=/’s

| Loss 0.5 I Loss 0.5
- 1 1
Expert 1 I—'—I Expert 1
| Loss 0.4 | Loss 0.51
Expert 2 | | Expert 2 I —

Keep both Keep expert 7

Baseline Algorithm: Eviction Rule & ————

Refined = -
|

Let Lj(i) = average loss of i over j’s lifetime

** Definition [dominance]. An expert i dominates an expert j, if

) Expert/is older than expert/; and

i) L) < L) +e

Interpretation: forj to survive, it has to be better than / by an € margin

Baseline Algorithm: Eviction Rule

In pictures

| Loss 0.5 | Loss 0.5
I
Expert 1 T B Expert 1
| Loss 0.5 — 2¢ | Loss 0.5 — ¢
Expert 2 —_— Expert 2 —
I I
Keep both Keep expert 7

Next: memory analysis, then regret

Memory Analysis

Bound pool size by 1/¢?

¢ Lemma [loss vs length]

Let P, = the pool at time t.

Let J; = the lifetime of i for i € P,. Let L{(i) = average loss of j over ’s lifetime.

After eviction, take i older thanj (0, > ﬂj). Then either
) p;= (1 +e)f;or

i) L) > Li(j) + e/2

Memory Analysis

Picture for the key lemma

) Either p; > (1 + €)p; or

i) Li(i) > L(j) + &/2

-1 -1
Length > (1 + ¢)L m loss > +¢/2
—_ 1 _ 1

Length = L loss = ¢

) Either p, > (1 + €)p;; or
Key Lemma ’
Proof Sketch i) Li(i) = L)) + &/2

 Assume ii) doesn’t hold, and show i) has to hold

-1 -1
Length > (1 + ¢€)L m loss > + /2
I -

Length = L loss = ¢

) Either p, > (1 + €)p;; or
Key Lemma °’
Proof Sketch i) Li(i) = L)) + &/2

 Assume ii) doesn’t hold. Show i) has to hold
- The eviction rule => L(i) > L{(j) + ¢
» By assumption => L(i) < L{(j) + &/2

 Loss of / in red segment is small + loss is [0,1] => red segment is long

-1 -
NOT i) Lossof i < £ + &/2 |:> Length of i > (1 4+ €)L)
-1 -1

Loss of j = Length of j =L

) Either p; > (1 + &)p; or

Memory Analysis
Pool size bound i) Li(i) > L()) + &/2

* Order experts in pool by theirage: 1 ->2 ->3->4 ->...

* Nailve argument: consider adjacent pairs

log T
. If always case i), cannot happen for > o2 = O(log T/¢) times
log(1 + €)

« If always case ii), cannot happen for > 1/¢€ times

-1 -1
Length > (1 + €)L m loss > + /2
- -

Length = L loss = ¢

) Either p; > (1 + &)p; or

Memory Analysis

Pool size bound i) Li(i) > L()) + &/2

 Claim: Pool size < 1/¢&?

 Between any / older thanj in the pool
o [—=>jiff; 2 (1 +¢)p; (length 1) CD/@\@
o [—>jif L) 2 L()j) + /2 (loss 1)

A DAG with edge colors
* Longest green chain < log T/¢; and longest red chain < 1/¢

. Size of graph < 1/&? (can be formalized via Dilworth’s theorem)

Remarks

Finishing off memory analysis

* Recall: eviction rule makes pairwise comparisons on sub-intervals

* Quadratic blow up from pool size to actual memory usage
. =>1/&* memory
A potential function argument to bound the pool size by 1/¢&

+ =>1/&% memory as promised

* See the paper for details

Regret Analysis
At a high level

 Regret = “Inner-Regret” + “Outer-Regret”
* “Inner-Regret” = ALG - best expert in the
pool
e “Outer-Regret” = best in pool (*) - best
overall (i*)
* |nner-Regret Is small by MWU
* QOuter-Regret is small if the pool contains

good experts in general

Regret Analysis Epoch length = B
Epoch by epoch Best expert = /i*

Regret = “Inner-Regret” + “Outer-Regret”

) Inner-Regret=(T/B) - \/ B i*

_—

4
-

- |

* Epochs Regret per epoch

i) Outer-Regret: a thought experiment

Analysis of Outer-Regret Epoch length = B

Thought experiment Best expert = /*

* Recall at the beginning of each epoch, we sample 7 expert into the pool

* Consider a fixed epoch

 Thought experiment: imagine /* had been sampled at its beginning
(regardless what happened in the actual execution of the algorithm)

* Definition [Evict and stay epoch]

 An epoch is an evict epoch If /* would be evicted eventually (at some
point in future)

 An epoch is an stay epoch if i* would stay forever

Evict EpOCh Epoch length = B

They are good Best expert =/

* Intuition: evict epochs are good epochs
e |f/* Is evicted by some J, then due to the eviction rule

* /IS an older expert

* /'s average loss is ~smaller than / over ,upto €
e => Within , /’s loss is only € worse than /* per day (on average)
e« => Within , outer-regret per day Is at most ¢
i j* |* beaten by |

N /

L B E— Re——— e —

Evict EpOCh Epoch length = B

Best expert =/

 Conclusion: Within , average outer-regret Is at most ¢

* Potentially, all epochs evict epochs

 In total, outer-regret, due to evict epochs, is < el

J I I™ beaten by |

N /

L A E— —_—t

Stay Epoch Epoch length = B

They are bad but can be bounded Best expert = /*

* Intuition: stay epochs are bad epochs
* No expert in pool can compete with /*
» Key idea: bound the number of stay epochs
* |f in one of the stay epochs, i* actually got sampled, we are done!

 Foe each stay epoch, this happens with probability 7/n

o After O(nlogn) stay epochs, i* would be sampled into the pool with high probability
J "

\ \ I* survivesto T

L B E—

Stay Epoch Epoch length = B

Best expert =/

» Conclusion: at most O(n log n) stay epochs
» Naively, outer-regret within each stay epoch < B

 => |n total, total outer-regret, due to stay epochs, is < Bnlogn

Finishing Regret Analysis

Regret = “Inner-Regret” + “Outer-Regret”

) Inner-Regret=(T/B) - \/E

_—

4
-

- |

* Epochs Regret per epoch

ii) Outer-Regret: el + Bnlogn

|

evict epoch stay epoch

Summing and choosing B properly => €1 regret

Online Width Reduction

Second part of our algorithm

. Baseline: 1/&” memory and T regret

* Width reduction: boost the regret guarantee

» Observation: If the loss is within |0,p] instead of |0,1], the regret guarantee is
O(epT) instead of O(eT')

 Observation: Average loss of any expert is > baseline - g, by the regret
guarantee

» |dea: Create meta-expert e; by taking the best of { / and baseline }

Online Width Reduction

» |dea: Create meta-expert ¢; by taking the best of { / and baseline }

 Run MWU on i and baseline (intuitively, MWU is taking min, up to small gap)

 Claim: the loss of ¢; is in [Baseline - £, Baseline]

* Upper bound: MWU is ~ taking min

* Lower bound due to [Observation: Average loss of any expert is > baseline - €,
by the regret guarantee]

e Reduces width from 1 to €

Conclusion

Open directions

* Applications of expert learning (treating our algorithm as a blackbox)
e Streaming (e.g., maximum matching, linear programming and set cover)
* Finding game equilibria (adaptivity is an issue)

* Extend our results to
» other sequential decision making problems (e.g., reinforcement learning)
* other notions of regret (e.g., swap regret and dynamic regret)

e Calibration in online prediction

* Simpler optimal algorithm (c.f. Peng & Rubinstein, arXiv 2023)

