
Online Prediction in Sub-linear Space
Binghui Peng (Columbia) Fred Zhang (UC Berkeley)

Forecasting
Online and over many days

High Level Pitch
Online learning meets streaming algorithm

• The experts problem

• The most basic question in online learning

• Classically: multiplicative weights update (MWU) method

• Optimal regret, but space complexity

• Main result: first algorithm with small regret & sub-linear memory

• Conceptually: a sub-linear space version of MWU

• Opens up many new directions (more soon!)

T Ω(n)

Outline

Background & problem settings

A simple hardness result

Our results

Algorithms & techniques

Open directions

Outline

Background & problem settings

A simple hardness result

Our results

Algorithms & techniques

Open directions

Online Prediction with Experts Advice

• An unknown sequence {0, 1} of T days

• Experts from 1 to n

• At day t, expert i recommends

• Algorithm follows one of them & suffers loss 1 iff it makes mistake

xt(i) ∈ {0,1}

Regret(T) = ∑
t∈[T]

ℓt(ALG) − min
i*∈[n] ∑

t∈[T]

ℓt(i*)

Formalizing weather forecasting

Online Learning with Experts Advice
A slight generalization and better known

• T days, n experts

• No sequence to predict

• Algorithm plays one of the experts from [n]

• At the end of the day, each expert receives a loss ℓt(i) ∈ [0,1]

Regret(T) = ∑
t∈[T]

ℓt(ALG) − min
i*∈[n] ∑

t∈[T]

ℓt(i*)

Adversary Model?
Three variants

i) Non-adaptive: the loss vectors are fixed upfront

ii) Blackbox adaptive: the adversary sees the output of the algorithm and
may adapt future loss values

iii) White-box adaptive: the adversary may even see the internal state of
the algorithm

ℓt ∈ [0,1]n

This talk: focus on non-adaptive model, the most classic in literature

Goal
Regret minimization

• Known: can achieve regret

• Many algorithms can do this

• Naive (Follow-the-Leader): play the expert with minimum historical loss

• Known: regret =

• Classic algorithms refine this idea

T log n

Ω(T)

How to Solve it?
i) Multiplicative Weights Update

✤ Algorithm [MWU]:

• Initialize weight w = (1/n, 1/n, …, 1/n)

• For each day t:

• Play: expert with probability proportional to

• Observe: loss

• Update:

i wi

ℓt(i), for each i ∈ [n]

wi ← wi(1 − ℓt(i)/2)

Comments on MWU

• Equivalence: Follow-the-Regularized-Leader (FTRL)

❖ Algorithm [FTRL]

Update: p(t) = arg min
p∈Δn

∑
j≤t

⟨p, ℓj⟩ + η ⋅ ψ(p)

• Regret:

• Memory size:

T

Ω(n)

How to Solve it?
ii) Follow-the-Perturbed-Leader (FTPL)

❖ Algorithm [FTPL]

Play: i ∈ arg min
i ∑

j<t

ℓj(i) + εi

• Regret:

• Memory size:

T

Ω(n)

Take-away Message

• Goal: design o(n) space algorithm with small o(T) regret

• Main barrier: leader selection

• All classic algorithms follow this paradigm

• We have to get around it

Outline

Background & problem settings

A simple hardness result

Our results

Algorithms & techniques

Open directions

What can we do then?
Find out the best expert in small space?

• Let’s say

• Once I know the best expert, keep playing it and suffer 0 regret
forever

• Theorem [No-Go against Best Expert Identification]:

 Identifying best expert cannot be done in o(n) space

T → ∞

Srinivas, Woodruff, Xu & Zhou, STOC 22

Proof
Via communication complexity reduction

• Set Disjointness —needs bits of communication

• Alice holds ; Bob holds

• Promise problem

• Distinguish or

Ω(n)

X ∈ {0,1}n Y ∈ {0,1}n

|X ∩ Y | = 0 1

Proof
Continued

• Reduction

• Alice: a stream of T = n days.
Expert i is correct on day i iff

• Bob: similarly

• Combine the stream —> instance
of online learning with 2n days

Xi = 1

X = 11001 = {1,2,5}
Day 1 Day 2 Day 3 Day 4 Day 5

Expert 1 ✅ ❌ ❌ ❌ ❌

Expert 2 ❌ ✅ ❌ ❌ ❌

Expert 3 ❌ ❌ ❌ ❌ ❌

Expert 4 ❌ ❌ ❌ ❌ ❌

Expert 5 ❌ ❌ ❌ ❌ ✅

Proof
Disjoint case

X = 11001 = {1,2,5}, Y = {3,4}

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Expert 1 ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Expert 2 ❌ ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Expert 3 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌ ❌

Expert 4 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌

Expert 5 ❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌ ❌ ❌

All experts are correct at most once

Proof
Non-disjoint case

X = 11001 = {1,2,5}, Y = {1,3,4}

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Expert 1 ✅ ❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌ ❌

Expert 2 ❌ ✅ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

Expert 3 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌ ❌

Expert 4 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✅ ❌

Expert 5 ❌ ❌ ❌ ❌ ✅ ❌ ❌ ❌ ❌ ❌

Expert 1 is correct twice

Proof
Finishing of

• Create the instance by the reduction

• Alice runs the best arm identification algorithm, sends her memory to Bob,
and Bob continues —> best expert

• The best expert is correct on exact 2 or <= 1 days

• Corresponding to the two cases of Set Disjointness

• Run another round of communication to double check

• Conceptual message: best arm identification harder than regret
minimization in sub-linear space

Outline

Background & problem settings

A simple hardness result

Our results

Algorithms & techniques

Open directions

Main Result
Think of T → ∞

❖ Theorem [Peng & Zhang, SODA ’23]

An online learning algorithm (under non-adaptive adversary) that

• uses memory;

• gets a total regret of
nδ

O (T2/(2+δ)n2)
Examples:

• memory & regret (with)

• memory & regret (with)

n0.99 T2/3 δ = 0.99

n T4/5 δ = 0.5

A Memory-Regret Trade-off
Upper bound

δ

Regret

2/3

This turns out to be far from tight!

Known Lower Bound
Prior work by Srinivas, Woodruff, Xu & Zhou, STOC 22

• Theorem [Memory Lower Bound for Experts Learning]

 For any algorithm with S bits of memory, regret is at least

• Examples:

• With S = n, regret is

• With S = √n, regret is

• With S = O(1), regret is

Ω (nT/S)

Ω (T)
Ω (n1/4 T)

Ω (nT)

Follow-up Work
Peng & Rubinstein (arXiv, 2023)

• regret is possible, even in constant space!

• Theorem [Tight Memory-Regret Tradeoff for Online Learning]

 An algorithm matching the lower bound (up to polylogs)

• Same framework of this talk — though a quite a tour de force

On (T)

Outline

Background & problem settings

A simple hardness result

Our results

Algorithms & techniques

Open directions

Overview
A baseline algorithm + bootstrapping

i) A baseline algorithm

• Regret: regret

• Memory: space

ii) A hierarchical “width reduction” procedure

• Regret: From to

• Memory: small blow-up

εT

1/ε2

εT T1−δ(ε)

A Natural Idea
Subsampling!

❖ Baseline Algorithm [A High-Level Abstraction]

• Maintain a small subset of experts (the pool)

• Run MWU on them

Intuition: Reduce regret minimization to pooling good experts 
(to be formalized)

Baseline Algorithm
Very simple

❖ Algorithm [Baseline]

• Initially, sample an arbitrary pool of experts

• Play MWU(Pool) everyday

• Within each epoch:

• At the beginning, sample 1 expert into the pool (reinitialize the
MWU)

• At the end, apply some eviction rule to remove experts

1/ε2

Break the T days into epochs of length B

Naive Attempt
Just look at the average loss?

• Evict the worst-performing expert?

• Counter-example:

• One best expert, good on average

• Many bad experts, but they excel
locally (on small regions)

• Best expert can be evicted and
hard to come back

T

Loss

The Lesson
We need stability

• Non-robust with respect to local performance

• Average performance is useful—just need to be looked at differently

• For a old expert, its average loss is “stable”

• For a young expert, it’s not

• Key idea: Respect senior folks! This stabilizes the algorithm

• Keep good experts

• Keep old experts

Average Loss of i =
Cumulative Loss of i

Age of i

Baseline Algorithm: Eviction Rule

• High level: pairwise tournament, any expert that gets dominated is evicted

• Definition [dominance] An expert i dominates an expert j, if

i) Expert i is older than expert j; and

ii) Over j’s lifetime, expert i’s average loss <= j’s

Expert 1

Loss 0.5

Loss 0.4

Keep both

Expert 2

Expert 1

Loss 0.5

Loss 0.51

Keep expert 1

Expert 2

Baseline Algorithm: Eviction Rule
Refined

Let = average loss of i over j’s lifetime

❖ Definition [dominance]. An expert i dominates an expert j, if

i) Expert i is older than expert j; and

ii)

Lj(i)

Lj(i) ≤ Lj(j) + ε

Interpretation: for j to survive, it has to be better than i by an marginε

E1

E2

Baseline Algorithm: Eviction Rule
In pictures

Expert 1

Loss 0.5

Loss 0.5 − 2ε

Keep both

Expert 2

Expert 1

Loss 0.5

Loss 0.5 − ε

Keep expert 1

Expert 2

Next: memory analysis, then regret

Memory Analysis
Bound pool size by 1/ε2

❖ Lemma [loss vs length]

Let = the pool at time t.

Let = the lifetime of i for . Let = average loss of i over j’s lifetime.

After eviction, take i older than j (). Then either

i) ; or

ii)

Pt

βi i ∈ Pt Lj(i)

βi ≥ βj

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

Memory Analysis
Picture for the key lemma

i) Either ; or

ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

Length = L

Length ≥ (1 + ϵ)L

loss = ℓ

loss ≥ ℓ + ε/2

Key Lemma
Proof Sketch

• Assume ii) doesn’t hold, and show i) has to hold

Length = L

Length ≥ (1 + ϵ)L

loss = ℓ

loss ≥ ℓ + ε/2

i) Either ; or

ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

Key Lemma
Proof Sketch

• Assume ii) doesn’t hold. Show i) has to hold

• The eviction rule =>

• By assumption =>

• Loss of i in red segment is small + loss is [0,1] => red segment is long

Lj(i) > Lj(j) + ε

Li(i) < Lj(j) + ε/2

Length of j = L

Length of i ≥ (1 + ϵ)L

Loss of j = ℓ

Loss of i < ℓ + ε/2NOT ii) i)

i) Either ; or

ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

Memory Analysis
Pool size bound

• Order experts in pool by their age: 1 -> 2 -> 3 -> 4 ->…

• Naive argument: consider adjacent pairs

• If always case i), cannot happen for > times

• If always case ii), cannot happen for > times

log T
log(1 + ε)

= O(log T/ε)

1/ε

Length = L

Length ≥ (1 + ϵ)L

loss = ℓ

loss ≥ ℓ + ε/2

i) Either ; or

ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

Memory Analysis
Pool size bound

• Claim: Pool size

• Between any i older than j in the pool

• i —> j if (length ↓)

• i —> j if (loss ↓)

• A DAG with edge colors

• Longest green chain ; and longest red chain

• Size of graph (can be formalized via Dilworth’s theorem)

≤ 1/ε2

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

≤ log T/ε ≤ 1/ε

≤ 1/ε2

1 2 3

i) Either ; or

ii)

βi ≥ (1 + ε)βj

Li(i) ≥ Lj(j) + ε/2

Remarks
Finishing off memory analysis

• Recall: eviction rule makes pairwise comparisons on sub-intervals

• Quadratic blow up from pool size to actual memory usage

• => memory

• A potential function argument to bound the pool size by

• => memory as promised

• See the paper for details

1/ε4

1/ε

1/ε2

Regret Analysis
At a high level

• Regret = “Inner-Regret” + “Outer-Regret”

• “Inner-Regret” = ALG - best expert in the

pool

• “Outer-Regret” = best in pool (j*) - best

overall (i*)

• Inner-Regret is small by MWU

• Outer-Regret is small if the pool contains

good experts in general

ALG

j*

i*

Regret Analysis
Epoch by epoch

Regret = “Inner-Regret” + “Outer-Regret”

i) Inner-Regret =

ii) Outer-Regret: a thought experiment

(T/B)
⏟

Epochs

⋅ B⏟
Regret per epoch

ALG

j*

i*

Epoch length = B
Best expert = i*

Analysis of Outer-Regret
Thought experiment

• Recall at the beginning of each epoch, we sample 1 expert into the pool

• Consider a fixed epoch

• Thought experiment: imagine i* had been sampled at its beginning
(regardless what happened in the actual execution of the algorithm)

• Definition [Evict and stay epoch]

• An epoch is an evict epoch if i* would be evicted eventually (at some
point in future)

• An epoch is an stay epoch if i* would stay forever

Epoch length = B
Best expert = i*

Evict Epoch
They are good

• Intuition: evict epochs are good epochs

• If i* is evicted by some j, then due to the eviction rule

• j is an older expert

• j’s average loss is ~smaller than i over i*’s lifetime, up to

• => Within i*’s lifetime, j’s loss is only worse than i* per day (on average)

• => Within i*’s lifetime, outer-regret per day is at most

ε

ε

ε

Epoch length = B
Best expert = i*

i* i* beaten by jj

Evict Epoch

• Conclusion: Within i*’s lifetime, average outer-regret is at most

• Potentially, all epochs evict epochs

• In total, outer-regret, due to evict epochs, is

ε

≤ εT

i* i* beaten by jj

Epoch length = B
Best expert = i*

Stay Epoch
They are bad but can be bounded

• Intuition: stay epochs are bad epochs

• No expert in pool can compete with i*

• Key idea: bound the number of stay epochs

• If in one of the stay epochs, i* actually got sampled, we are done!

• Foe each stay epoch, this happens with probability 1/n

• After stay epochs, i* would be sampled into the pool with high probabilityO(n log n)
i*j i*i*

i* survives to T

Epoch length = B
Best expert = i*

Stay Epoch

• Conclusion: at most stay epochs

• Naively, outer-regret within each stay epoch

• => In total, total outer-regret, due to stay epochs, is

O(n log n)

≤ B

≤ Bn log n

Epoch length = B
Best expert = i*

Finishing Regret Analysis

Regret = “Inner-Regret” + “Outer-Regret”

i) Inner-Regret =

ii) Outer-Regret:

(T/B)
⏟

Epochs

⋅ B⏟
Regret per epoch

εT⏟
evict epoch

+ Bn log n

stay epoch

Summing and choosing B properly => regretεT

Online Width Reduction
Second part of our algorithm

• Baseline: memory and regret

• Width reduction: boost the regret guarantee

• Observation: If the loss is within instead of , the regret guarantee is
 instead of

• Observation: Average loss of any expert is baseline - , by the regret
guarantee

• Idea: Create meta-expert by taking the best of { i and baseline }

1/ε2 εT

[0,ρ] [0,1]
O(ερT) O(εT)

≥ ε

ei

Online Width Reduction

• Idea: Create meta-expert by taking the best of { i and baseline }

• Run MWU on i and baseline (intuitively, MWU is taking min, up to small gap)

• Claim: the loss of is in [Baseline - , Baseline]

• Upper bound: MWU is ~ taking min

• Lower bound due to [Observation: Average loss of any expert is baseline - ,
by the regret guarantee]

• Reduces width from 1 to

ei

ei ε

≥ ε

ε

Conclusion
Open directions

• Applications of expert learning (treating our algorithm as a blackbox)

• Streaming (e.g., maximum matching, linear programming and set cover)

• Finding game equilibria (adaptivity is an issue)

• Extend our results to

• other sequential decision making problems (e.g., reinforcement learning)

• other notions of regret (e.g., swap regret and dynamic regret)

• Calibration in online prediction

• Simpler optimal algorithm (c.f. Peng & Rubinstein, arXiv 2023)

