Online Prediction in Sub-linear SpaceBinghui Peng (Columbia)Fred Zhang (UC Berkeley)

Forecasting Online and over many days

High Level Pitch Online learning meets streaming algorithm

- The experts problem
 - The most basic question in online learning
- Classically: multiplicative weights update (MWU) method
 - Optimal \sqrt{T} regret, but $\Omega(n)$ space complexity
 - Main result: first algorithm with small regret & sub-linear memory
 - Conceptually: a sub-linear space version of MWU
- Opens up many new directions (more soon!)

Outline

- Background & problem settings
- A simple hardness result
- [□] Our results
- Algorithms & techniques
- Open directions

Outline

- Background & problem settings
- A simple hardness result
- Our results
- Algorithms & techniques
- Open directions

Online Prediction with Experts Advice Formalizing weather forecasting

- An unknown sequence {0, 1} of T days
- Experts from 1 to n
 - At day t, expert i recommends $x_t(i) \in \{0,1\}$

$$\operatorname{Regret}(T) = \sum_{t \in [T]} \ell$$

Algorithm follows one of them & suffers loss 1 iff it makes mistake

$\mathcal{C}_t(\mathsf{ALG}) - \min_{i^* \in [n]} \sum_{t \in [T]} \mathcal{C}_t(i^*)$

Online Learning with Experts Advice A slight generalization and better known

- T days, n experts
- No sequence to predict
- Algorithm *plays* one of the experts from [n]
- At the end of the day, each expert receives a loss $\ell_t(i) \in [0,1]$

$$\operatorname{Regret}(T) = \sum_{t \in [T]} \ell$$

 $\mathcal{L}_t(\mathsf{ALG}) - \min_{i^* \in [n]} \sum_{t \in [T]} \mathcal{L}_t(i^*)$

Adversary Model? Three variants

- **Non-adaptive:** the loss vectors $\ell_t \in [0,1]^n$ are fixed upfront **i**)
- **Blackbox adaptive:** the adversary sees the output of the algorithm and ii) may adapt future loss values
- iii) White-box adaptive: the adversary may even see the internal state of the algorithm

This talk: focus on non-adaptive model, the most classic in literature

Goal **Regret minimization**

- Known: can achieve $\sqrt{T \log n}$ regret
- Many algorithms can do this

 - Known: regret = $\Omega(T)$
 - Classic algorithms refine this idea

Naive (Follow-the-Leader): play the expert with minimum historical loss

How to Solve it? i) Multiplicative Weights Update

Comments on MWU

• Equivalence: Follow-the-Regularized-Leader (FTRL)

- **Regret**: \sqrt{T}
- Memory size: $\Omega(n)$

$$p, \ell_j \rangle + \eta \cdot \psi(p)$$

How to Solve it? ii) Follow-the-Perturbed-Leader (FTPL)

- **Regret**: \sqrt{T}
- Memory size: $\Omega(n)$

Take-away Message

- Goal: design o(n) space algorithm with small o(T) regret
- Main barrier: leader selection
 - All classic algorithms follow this paradigm
 - We have to get around it

Outline

Background & problem settings

- A simple hardness result
- Our results
- Algorithms & techniques
- Open directions

What can we do then? Find out the best expert in small space?

- Let's say $T \to \infty$
 - forever
- <u>Theorem</u> [No-Go against Best Expert Identification]:

Identifying best expert cannot be done in o(n) space

Once I know the best expert, keep playing it and suffer 0 regret

Srinivas, Woodruff, Xu & Zhou, STOC 22

Proof Via communication complexity reduction

- Set Disjointness needs $\Omega(n)$ bits of communication
 - Alice holds $X \in \{0,1\}^n$; Bob holds $Y \in \{0,1\}^n$
 - Promise problem
 - Distinguish $|X \cap Y| = 0$ or 1

Proof Continued

- Reduction
 - Alice: a stream of T = n days. Expert *i* is correct on day *i* iff $X_{i} = 1$
 - Bob: similarly
 - Combine the stream —> instance of online learning with 2n days

$X = 11001 = \{1, 2, 5\}$

	Day 1	Day 2	Day 3	Day 4	Day 5
Expert 1		×	×	×	×
Expert 2	×		×	×	×
Expert 3	×	X	X	×	×
Expert 4	×	×	×	×	×
Expert 5	×	X	X	×	

ProofDisjoint case

$X = 11001 = \{1, 2, 5\}, Y = \{3, 4\}$

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
Expert 1		×	×	X	X	×	×	×	×	×
Expert 2	×		×	×	×	×	×	×	×	×
Expert 3	×	X	×	×	×	×	×		×	×
Expert 4	×	×	×	×	×	×	×	×		×
Expert 5	×	×	×	×		×	×	×	×	×

All experts are correct at most once

Proof Non-disjoint case

$X = 11001 = \{1, 2, 5\}, Y = \{1, 3, 4\}$

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
Expert 1		×	×	X	X		X	X	X	×
Expert 2	×		×	×	×	×	×	×	×	×
Expert 3	×	X	X	X	X	X	×		×	X
Expert 4	×	X	X	X	X	×	X	X		×
Expert 5	×	×	X	×		×	×	×	×	×

Expert 1 is correct twice

Proof **Finishing off**

- Create the instance by the reduction
- and Bob continues —> best expert
 - The best expert is correct on exact 2 or <= 1 days
 - Corresponding to the two cases of Set Disjointness
- Run another round of communication to double check
- Conceptual message: best arm identification harder than regret minimization in sub-linear space

Alice runs the best arm identification algorithm, sends her memory to Bob,

Outline

- Background & problem settings
- A simple hardness result
- [□] Our results
- Algorithms & techniques
- Open directions

Main Result Think of $T \rightarrow \infty$

- uses n^{δ} memory;
- gets a total regret of $O(T^{2/(2+\delta)}n^2)$

Examples:

- $n^{0.99}$ memory & $T^{2/3}$ regret (with $\delta = 0.99$)
- \sqrt{n} memory & $T^{4/5}$ regret (with $\delta = 0.5$)

A Memory-Regret Trade-off Upper bound

This turns out to be far from tight!

Known Lower Bound Prior work by Srinivas, Woodruff, Xu & Zhou, STOC 22

- <u>Theorem</u> [Memory Lower Bound for Experts Learning] For any algorithm with S bits of memory, regret is at least $\Omega\left(\sqrt{nT/S}\right)$
- Examples:
 - With S = n, regret is $\Omega\left(\sqrt{T}\right)$
 - With $S = \sqrt{n}$, regret is $\Omega(n^{1/4}\sqrt{n})$
 - With S = O(1), regret is $\Omega(\sqrt{n})$

$$\left(\frac{T}{T} \right)$$

Follow-up Work Peng & Rubinstein (arXiv, 2023)

- $O_n\left(\sqrt{T}\right)$ regret is possible, even in constant space!
- <u>Theorem</u> [Tight Memory-Regret Tradeoff for Online Learning] An algorithm matching the lower bound (up to polylogs)
- Same framework of this talk though a quite a tour de force

Outline

- Background & problem settings
- A simple hardness result
- ✓ Our results
- Algorithms & techniques Open directions

Overview

A baseline algorithm + bootstrapping

A baseline algorithm **i**)

- Regret: εT regret
- Memory: $1/\varepsilon^2$ space
- ii) A hierarchical "width reduction" procedure
 - Regret: From εT to $T^{1-\delta(\varepsilon)}$
 - Memory: small blow-up

A Natural Idea Subsampling!

Baseline Algorithm [A High-Level Abstraction]

- Maintain a small subset of experts (the pool)
- Run MWU on them

Intuition: Reduce regret minimization to pooling good experts (to be formalized)

evel Abstraction]

Baseline Algorithm Very simple

<u>Algorithm</u> [Baseline]

- Initially, sample an arbitrary pool of $1/\varepsilon^2$ experts
- Play MWU(Pool) everyday
- Within each epoch:
 - MWU)
 - At the end, apply some eviction rule to remove experts

Break the T days into epochs of length B

• At the beginning, sample 1 expert into the pool (reinitialize the

Naive Attempt Just look at the average loss?

- Evict the worst-performing expert?
- Counter-example:
 - One best expert, good on average
 - Many bad experts, but they excel locally (on small regions)
 - Best expert can be evicted and hard to come back

The Lesson We need stability

- Non-robust with respect to local performance
- Average performance is useful—just need to be looked at differently
 - For a old expert, its average loss is "stable"
 - For a young expert, it's not
- Key idea: Respect senior folks! This stabilizes the algorithm
 - Keep good experts
 - Keep old experts

Average Loss of $i = \frac{\text{Cumulative Loss of }i}{\text{Age of }i}$

Baseline Algorithm: Eviction Rule

- High level: pairwise tournament, any expert that gets dominated is evicted • <u>Definition</u> [dominance] An expert *i* dominates an expert *j*, if
- - Expert *i* is older than expert *j*; and I)
 - ii) Over j's lifetime, expert i's average loss $\leq j's$

Baseline Algorithm: E Refined

Interpretation: for *j* to survive, it has to be better than *i* by an ε margin

Suidtion Dulo	⊏1	
	E1 E2	
	L	

Baseline Algorithm: Eviction Rule In pictures

Next: memory analysis, then regret

Memory Analysis Bound pool size by $1/\varepsilon^2$

Lemma [loss vs length] Let P_t = the pool at time t. After eviction, take *i* older than *j* ($\beta_i \ge \beta_j$). Then either i) $\beta_i \ge (1 + \varepsilon)\beta_i$; or ii) $L_i(i) \ge L_j(j) + \varepsilon/2$

Let β_i = the lifetime of *i* for $i \in P_t$. Let $L_j(i)$ = average loss of *i* over *j*'s lifetime.

Memory Analysis Picture for the key lemma

Length $\geq (1 + \epsilon)L$

Length = L

i) Either $\beta_i \ge (1 + \varepsilon)\beta_i$; or ii) $L_i(i) \ge L_j(j) + \varepsilon/2$

 $\log \ge \ell + \varepsilon/2$

$$loss = \ell$$

Key Lemma **Proof Sketch**

Assume ii) doesn't hold, and show i) has to hold

Length = L

i) Either $\beta_i \ge (1 + \varepsilon)\beta_i$; or ii) $L_i(i) \ge L_j(j) + \varepsilon/2$

$$loss = \ell$$

Key Lemma **Proof Sketch**

- Assume ii) doesn't hold. Show i) has to hold
 - The eviction rule => $L_i(i) > L_i(j) + \varepsilon$
 - By assumption => $L_i(i) < L_i(j) + \varepsilon/2$

Either $\beta_i \ge (1 + \varepsilon)\beta_i$; or i) ii) $L_i(i) \ge L_j(j) + \varepsilon/2$

• Loss of *i* in red segment is small + loss is [0,1] = red segment is long

Length of j = L

Memory Analysis Pool size bound

- Order experts in pool by their age: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow ...$
- Naive argument: consider adjacent pairs
 - If always case i), cannot happen f
 - If always case ii), cannot happen for $> 1/\varepsilon$ times

Length $\geq (1 + \epsilon)L$ Length = L

i) Either $\beta_i \ge (1 + \varepsilon)\beta_j$; or ii) $L_i(i) \ge L_j(j) + \varepsilon/2$

for >
$$\frac{\log T}{\log(1 + \varepsilon)} = O(\log T/\varepsilon)$$
 times

 $\log \ge \ell + \varepsilon/2$

$$loss = \ell$$

Memory Analysis Pool size bound

- <u>Claim</u>: Pool size $\leq 1/\varepsilon^2$
- Between any *i* older than *j* in the pool
 - $i \longrightarrow j$ if $\beta_i \ge (1 + \varepsilon)\beta_j$
 - $i \longrightarrow j$ if $L_i(i) \ge L_j(j) + \varepsilon/2$
- A DAG with edge colors
 - Longest green chain $\leq \log T/\varepsilon$; and longest red chain $\leq 1/\varepsilon$
 - Size of graph $\leq 1/\varepsilon^2$ (can be formalized via Dilworth's theorem)

i) Either $\beta_i \ge (1 + \varepsilon)\beta_j$; or ii) $L_i(i) \ge L_j(j) + \varepsilon/2$

(length ↓)

(loss ↓)

Remarks Finishing off memory analysis

- Recall: eviction rule makes pairwise comparisons on sub-intervals
 - Quadratic blow up from pool size to actual memory usage
 - => $1/\varepsilon^4$ memory
- A potential function argument to bound the pool size by $1/\varepsilon$
 - =>1/ ε^2 memory as promised
 - See the paper for details

Regret Analysis At a high level

- Regret = "Inner-Regret" + "Outer-Regret"
 - "Inner-Regret" = ALG best expert in the pool
 - "Outer-Regret" = best in pool (j*) best
 overall (i*)
- Inner-Regret is small by MWU
- Outer-Regret is small if the pool contains good experts in general

Regret Analysis Epoch by epoch

Regret = "Inner-Regret" + "Outer-Regret" i) Inner-Regret = (T/B) · \sqrt{B} # Epochs Regret per epoch

ii) Outer-Regret: a thought experiment

Analysis of Outer-Regret **Thought experiment**

- Consider a fixed epoch
- **Thought experiment**: imagine *i** had been sampled at its beginning (regardless what happened in the actual execution of the algorithm)
- <u>Definition</u> [Evict and stay epoch]
 - point in future)
 - An epoch is an stay epoch if *i** would stay forever

Epoch length = BBest expert = i^*

• Recall at the beginning of each epoch, we sample 1 expert into the pool

• An epoch is an evict epoch if *i** would be evicted eventually (at some

Evict Epoch They are good

- Intuition: evict epochs are good epochs
- If *i*^{*} is evicted by some *j*, then due to the eviction rule
 - *j* is an older expert
 - j's average loss is ~smaller than i over i's lifetime, up to ε
- => Within *i*^{*}'s lifetime, *j*'s loss is only ε worse than *i*^{*} per day (on average)
- => Within *i*^{*}'s lifetime, outer-regret per day is at most ε

Epoch length = BBest expert = i^*

Evict Epoch

- **Conclusion**: Within *i*^{*}'s lifetime, average outer-regret is at most ε
- Potentially, all epochs evict epochs
 - In total, outer-regret, due to evict epochs, is $\leq \varepsilon T$

Epoch length = BBest expert = i^*

Stay Epoch They are bad but can be bounded

- Intuition: stay epochs are bad epochs
- No expert in pool can compete with *i**
- Key idea: bound the number of stay epochs
 - If in one of the stay epochs, *i** actually got sampled, we are done!
 - Foe each stay epoch, this happens with probability 1/n
 - After $O(n \log n)$ stay epochs, i^{*} would be sampled into the pool with high probability

Epoch length = BBest expert = i^*

i^{*} survives to T

Stay Epoch

- Conclusion: at most $O(n \log n)$ stay epochs
- Naively, outer-regret within each stay epoch $\leq B$
 - => In total, total outer-regret, due to stay epochs, is $\leq Bn \log n$

Epoch length = BBest expert = i^*

Finishing Regret Analysis

Regret = "Inner-Regret" + "Outer-Regret" Inner-Regret = (T/B) · **i**) # Epochs Regret per epoch

- $\underline{\varepsilon}T$ ii) Outer-Regret: + $Bn \log n$ evict epoch stay epoch
- Summing and choosing *B* properly $= \varepsilon T$ regret

- \sqrt{B}

Online Width Reduction Second part of our algorithm

- Baseline: $1/\varepsilon^2$ memory and εT regret
- Width reduction: boost the regret guarantee
 - **Observation**: If the loss is within $[0,\rho]$ instead of [0,1], the regret guarantee is $O(\epsilon \rho T)$ instead of $O(\epsilon T)$
 - **Observation**: Average loss of any expert is \geq baseline ε , by the regret guarantee
- Idea: Create meta-expert e_i by taking the best of { i and baseline }

Online Width Reduction

- Idea: Create meta-expert e_i by taking the best of { i and baseline }
 - Run MWU on *i* and baseline (intuitively, MWU is taking min, up to small gap)
- <u>Claim</u>: the loss of e_i is in [Baseline ε , Baseline]
 - Upper bound: MWU is ~ taking min
 - Lower bound due to [Observation: Average loss of any expert is \geq baseline ε , by the regret guarantee]
- Reduces width from 1 to ε

Conclusion **Open directions**

- Applications of expert learning (treating our algorithm as a blackbox)
 - Streaming (e.g., maximum matching, linear programming and set cover)
 - Finding game equilibria (adaptivity is an issue)
- Extend our results to
 - other sequential decision making problems (e.g., reinforcement learning)
 - other notions of regret (e.g., swap regret and dynamic regret)
- Calibration in online prediction
- Simpler optimal algorithm (c.f. Peng & Rubinstein, arXiv 2023)